The AI Architecture of Versu

Richard Prideaux Evans and Emily Short

Imperial College, London

1 A Simulationist Interactive Drama

Versu is an improvisational play, rather than an interactive story. The player is
encouraged to perform her character, to improvise within the dramatic situation
that she has been thrown into. The smallest comment, the slightest look, even
not saying something - these moment-to-moment actions are noticed by the other
participants and amplified. In this respect, Versu resembles Facade. But while
Facade uses an architecture built around beats and joint-behaviours, Versu is an
agent-driven simulation in which each of the NPCs make decisions independently.

When building an interactive narrative system, one of the fundamental design
decisions is whether the individual agents or a centralised drama manager gets
to decide what happens [21]. At one end of the spectrum, a strong story system
is one in which the drama manager makes all the decisions. The NPCs have no
individual autonomy - they are just puppets of the drama manager. At the other
end of the spectrum is the strong autonomy system, in which the NPCs make
decisions based on their own individual preferences, unaware of authorial narra-
tive goals. Fagade occupies the middle ground on this axis: a centralised drama
manager chooses the next beat, but the individual agents and joint behaviours
have some limited control over how the beat is played out.

Versu, by contrast, takes the strong autonomy approach. Each character
chooses his next action based on his own individual beliefs and desires. There
is a centralised drama manager, but it is rare indeed for the drama manager to
override the characters’ autonomy and force them do something. Instead, the
drama manager typically operates at a higher level - by providing suggestions,
or tweaking the desires of the participants.

Why did we choose a strong autonomy approach in Versu? There were two
main reasons. Firstly, a true simulation provides much more opportunity for
replayability. In Facade, many of the behaviours are hard-coded to the par-
ticular characters who are involved in them. In Fagade there is no general
making-cocktails activity. Instead, there is the particular activity of Trip-making-
cocktails. Because the scripts and characters are entangled together, it would be
hugely nontrivial to replace a character in Fagade with another (replacing Trip
with Captain Kirk, say). It would involve rewriting most of the behaviours.

In Versu, the social practices are authored to be agnostic about which charac-
ters are assigned to which roles. This means that we can assign various different
characters to the roles, and everything just works. In a Versu-authored version
of the Fagade situation, you could play Grace, or Trip, or the guest. You could
assign different characters to the various roles, and see what happens.

2 Richard Prideaux Evans and Emily Short

The simulation makes a clear distinction between roles in a story and the
characters playing those roles. A romance might have a hero, a heroine, a friend,
and a jealous rival. The player is free to assign various characters to those roles.
She could make Mr Darcy be the hero, and Elizabeth Bennett be the heroine -
or, she could make Mr Collins be the hero, and Miss Bates be the heroine. The
episode will play out very differently depending on which characters are playing
which roles. If there are n roles and k(> n) characters to play those roles, we
have k!/(k — n)! permutations.

Relatedly, the scripts in Fagade assume that the player is always playing the
guest, and the hosts are always played by NPCs. If you wanted to rework it so
that you could play Trip or Grace, this would involve a major rewrite. In Versu,
because the social practices are authored to be character-agnostic, you can play
the same story from multiple perspectives. You can try out the job interview
out from the perspective of the interviewee, or the interviewer. You can even
play it as the drama manager. An episode with 2 roles could be played by two
humans in multiplayer, one human playing either role, or both roles played by
the AI. More generally, an episode with n roles has 2" permutations of player-
npc assignments. The first reason, then, that we committed to a simulationist
architecture is because we wanted to maximise replayability.

The second reason for choosing strong autonomy is that a simulationist ar-
chitecture allows the player more control over the outcome. A simulated system
has clear rules which the player can learn and internalize. Once she has confi-
dence that she has understood the internal mechanisms, she can use these to
anticipate the consequences of future action, and plan how to achieve her goals.
A non-simulated system risks being just a series of arbitrary puzzles, in which
the player is forced to guess the changing whims of the designer. A simulation,
by contrast, uses the same models repeatedly. The player can build up confidence
that she understands the underlying system - and increased understanding can
yield increased control.

2 Addressing the Design Questions Raised by Facade

Some of the crucial initial design decisions in Versu were made by looking hard
at what Facade achieved. We focused on Fagade in particular because it is such
a substantial achievement. In [8], when evaluating the successes and failures of
Facade, Mateas and Stern mention three outstanding issues in particular:

— The speed of content production and global agency. Because of the
intricate animation overlaying and parallel behaviours which needed to be
authored for most actions, adding a new piece of content to Facade was a
time-consuming task. In the end, after 3+ years in development, they only
had time to author 27 beats. The amount of global agency (the ability for
the player to affect the overall arc of the story) is limited by the amount of
content, so in the end the player did not have as much ability to affect the
outcome of the story as the authors had initially hoped.

The AI Architecture of Versu 3

— Feedback. Fagade involved three social “head-games”, played one after the
other (an affinity game, a hot-button game, and a therapy game). By de-
sign, the state of each game was not communicated directly (via numbers
of spreadsheets or sliders), but indirectly by gesture and tone of voice. (The
authors wanted to maintain the sense that this was a drama rather than a
computer game). But this design decision made it very hard for the player
to tell the state of the simulation.

— Interface. In Facade, the player can type any text she wishes. But the
parser will attempt to shoe-horn all the player’s sentences into one of 30
parametrized discourse acts. Unfortunately, the player’s utterance can not
always be fitted into one of these 30 specific actions - and even if it could, the
parser often can not see how it could. The player can feel like she is fighting
the parser, rather than using it effortlessly as a tool to communicate with.

We tried to make sure that Versu had good answers to the three issues which
Mateas and Stern identified:

— The speed of content production. To speed up content production, we
eschewed Fagade’s 3D procedurally animated characters for (procedurally-
generated) text and static images.

— Feedback. We added various visualisations to the UI (User Interface) so the
player can see at a glance the state of the simulation.

— Interface. We replaced the parser with a simpler menu interface. The af-
fordances provided by each social practice were displayed explicitly to the
player. She acts by clicking on a button.

We shall go through each of these three decisions in turn. But first, a point of
clarification: it may look like each of these responses to issues in Facade are
just simplifications that allowed us to avoid the hard problems that Mateas and
Stern were brave enough to tackle head on. But these decisions were not just a
cop-out - they were pursued in order to allow us to be more ambitious in our
stmulational goals. We will return to this point repeatedly below.

2.1 Text Output

Facade wholeheartedly embraced the “holodeck” vision of interactive drama in
which character behaviour is rendered realistically in multiple modalities: 3D
characters, parallel animation, recorded speech. This, of course, is one of the main
reasons why it took so long to add a new behaviour: it is time-consuming get-
ting the animations blending correctly and achieving sychronization with other
actors.

Now there is nothing wrong with realistic rendering of characters, but neither
is it necessary. We agree with Salen and Zimmerman [26] that the level of im-
mersion does not necessarily increase with extra levels of realism. A text output
can be just as immersive as a 3D animated environment. To think otherwise is to
be seduced by what Salen and Zimmerman call the “/mmersive fallacy”. Versu
does not use fancy 3D animation or voice actors - the output is dynamically

4 Richard Prideaux Evans and Emily Short

generated text and static images. Text output certainly makes it quicker to pro-
duce behaviour (in a later section, we shall describe how we managed to produce
an order of magnitude more behaviours than Facade in a shorter timeframe).
But that is not its only advantage. It is not just that text is cheaper than 3D
animation - it is also more expressive.

Text as an Expressive Medium: Interiority Before we started developing
Versu, when working on The Sims 3, we came across a revealing situation which
highlighted the advantages of text output for revealing interiority. There was
a chronically shy Sim who was hosting a party. Some of the guests had rung
the door, and were waiting to be ushered in. The shy Sim was sitting on the
couch, deciding what to do. Debugging his internal state, we could see that he
was conflicted: the norms of social propriety dictated that you should answer
the door when invited guests come over. But his own chronic shyness gave him
a strong countervailing reason for not answering the door: he very much wanted
to be alone. Within the decision-making system that we were using, the Sim had
a hard choice between answering the door and refusing to do so. But neither
of these options captured what the Sim wanted to express: what should have
happened is that the Sim answered the door reluctantly. Here, we express his
internal conflict through an adverbial modifier.

Now in a 3D game with animated polygonal characters, adding an adverbial
modifier to an action is a hugely expensive process: we would need a separate
animation for answering-the-door-reluctantly - and we would also need a sepa-
rate walk cycle for reluctant walking. Given a large set of animated actions, each
adverbial modifier we add would require a prohibitively large number of addi-
tional animations. But in a text game, adverbial modifiers are much cheaper: we
can modify a verb by simply appending an adverb to the sentence. Adverbial
modifiers are useful in many ways: we can use them to express internal state, to
express the reason for action, and also to express individual personality.

Text as an Expressive Medium: Individuality We wanted each character
in Versu to have a unique personality and we wanted their individuality to
be expressed throughout their actions. Text output made it feasible for each
character to have a unique text override for many actions. For example, in most
3D games, each character uses the same generic walk cycle. But in Versu, each
character has an individual way of walking: Brown swaggers, Frank Quinn walks
ponderously, George Wickham strides, Lady Catherine hobbles, while the pug
dog waddles.

2.2 Feedback

When designing ways to help the player understand the social simulation, we
were guided by Noah Wardrip-Fruin’s concept of the Sim City effect [34]. When
playing a game which simulates some aspect of experience that the player is
already familiar with, the player starts by using her own model of how it works.

The AI Architecture of Versu 5

But the simulation will inevitably diverge from reality in various ways. If things
go badly, the divergence between the player’s understanding of the phenomenon
and the simulation’s model of the phenomenon will prevent the player from
understanding or manipulating the system. The Sim City effect occurs when the
user-interface helps the player to transition from her original model of how the
thing actually works to how the simulation models it. If this works properly,
the player ends up with an accurate model of how the simulation models the
phenomenon, without having had to read a manual or textbook.

Our simulation is based on fine-grained emotional states, relationships, and
social practices. We made sure that the user interface exposed these to the player
transparently!.

A Family Supper

whom he prefers to the hero, and so he has contrived to promote that son at
the hero's expense. The other son is a clod, of mean intelligence and
unappealing manners, who will do no credit to his position.

Miss Bates signals for another glass of wine, and drinks it off in a single
swig.

She starts to feel woozy.

W Completed achi t: drunken sot
Frank: What an intriguing story! I do so admire the creative genius.

Miss Bates bs to a sudden, drink-induced melancholy and begins

talking about how sad the world is.

Lucy gives Miss Bates a small, reassuring smile.

Miss Bates lets rip a heartfelish

Mrs Quinn
WidoyLRLIJL R LR Mrs Quinn is disapproving of
Miss Bates. 'Some people do not
Mrs Quinn (to Miss Bates| know how to regulate their | JUNJIVEITH

4 A& :é‘

Fig. 1. Each character’s emotional state is displayed along with explanatory text.

To help the player understand the characters’ moods and relationships, we
added a portrait of each character at the bottom of the screen. (See Fig. 2).
Each character has various emotional states he can be in (based on Ekman’s
typology[4]), and each character has a different portrait for each emotional state.

1 A danger with exposing the simulation internals is that the experience starts to seem
less like a drama and more like a computer program. We worked hard to make sure
that the emotions, relationship states and social practices were exposed in a way
that kept the player immersed within the world we were creating.

6 Richard Prideaux Evans and Emily Short

When the player clicks on a character portrait, she sees why that character is
in that particular mood: each character remembers who the emotion is directed
towards (e.g. I am annoyed with Brown), and the event which prompted the
emotional change (e.g. Brown’s insult).

Our simulation is unusual in that there are multiple independent social prac-
tices running concurrently (this is described in detail below). To help the player
understand the state of the various social practices that are currently in play, we
organised the affordances around the practices which initiated them. For exam-
ple, if the player’s character is in the middle of a dinner-party, and Brown has
just made a rude remark, there will be two social practices running concurrently:
the dinner party (providing affordances to Eat, Drink, etc) and the current con-
versation (providing affordances to Disapprove of Brown, Forgive him, etc). The
affordances are arranged in categories, grouped by the social practice that instan-
tiated them, so that the player begins to understand the underlying simulation
state. The text for each social practice is carefully worded to display its current
state.

The AI Architecture of Versu 7

3 Architecture Overview

Our simulation is built up out of two types of objects: agents and social practices.
(See Fig. 3).

A social practice describes a type of recurring social situation. Some social
practices (e.g. a conversation, a meal, a game) only exist for a short time, while
others (e.g. a family, the moral community) can last much longer.

A practice coordinates agents via the roles they are playing. For example, a
greeting practice sees the two participants under the descriptions of greeter and
recipient.

The main function of the social practice is to describe the actions the agents
can do in that situation. A greeting practice, for example, tells the greeter how
he can greet the recipient. It also tells the recipient the various ways she can
respond.

The practice provides the agent with a set of suggested actions, but it is up to
the agent himself to decide which action to perform, using utility-based reactive
action selection. This is described in Section IX below.

In Versu, we allow multiple practices to exist concurrently. During a dinner
party, for example, there will be multiple practices operating at once:

eating and drinking (and commenting on the meal)

— the conversation about politics

the rising flirtation between Frank and Lucy

— responding to the fact that Mr Quinn has spilled the soup

Each of these practices provides multiple affordances. The agent’s set of options
is the union of the affordances from each of the practices he is participating in.

Some practices are organised into states, so that they can provide different
affordances in different situations. But a social practice is significantly more
powerful than a Finite-State Machine, in two main ways. First, each practice
can store arbitrary persistent data?, while the only memory a state machine has
is the state it is in®. Second, the only possible effect of a Finite-State Machine’s
action is transitioning from one state to another. A Versu action can do much
more than change the state of the practice: performing an action can result
in any sentence being added to the world database. The results of adding new
sentences can be that relationships are updated, new beliefs or desires are formed,
old practices are deleted or new practices are spawned.

2 The whist game, for example, stores which cards have been assigned to which players,
which suit is trumps, whose turn it is to play, and the score. See [10] for an early
description of how practices need their own memory to “keep score”.

3 Because the Finite-State Machine’s memory is limited by the number of states, it is
not Turing-complete.

8 Richard Prideaux Evans and Emily Short

4 The Architecture

In this diagram, boxes represent data and ovals represent procedures which op-
erate on that data:

| Social Practice File | | World Initialization File | | Character File |

4 \ 4
(Social Practice Parser) (Function Parser) (Function Parser)

A \ A
. . World Initialization Character Initialization
| Social Practice Type | | Funrtig n | Function |

\
(Function Interpreter) (Function Interpreter)

ocial Practice

Instantiator Character Instantiator

ocial Practice
Instances

Action Instantiator

Action Instances Characters

Decision Maker

A\

Chosen Action Instance

A\

Action Executor

Fig. 2. The architecture of the simulator. Data is placed in rectangles, and processes
in ovals. This diagram shows the information flow when an NPC makes a decision.
The same architecture is used for player choice - except the Action Instances are sent
directly to the user-interface, rather than to the Decision Maker.

The AI Architecture of Versu 9

We shall start from the top of the diagram and work downwards. Creating
an episode involves three types of scripts:

— Scripts defining the social practices that can be instantiated during the
episode
— Scripts defining the initial state of the characters that may be participating
in the episode
— A script defining the initial world state
All scripts are authored in a high-level domain-specific-language designed specif-
ically for this simulation: Praxis?.

When the episode starts, we execute the World Initialisation function, and
then execute the Character Initialisation function for each character who was
selected to participate in the episode. At this point, the Database contains the
initial world state.

Social practices can be parameterized by arguments, so they can be multiply
instantiated with different values for the arguments. Each practice type specifies
a set of actions together with their preconditions. The actions available to a
character at any given moment are determined by all the actions of the currently
instantiated practices whose preconditions are satisfied.

Agents score each available action (see section IX) and then execute the
highest scoring action. Actions may modify the database and/or generate text.

The diagram is almost symmetric, with social practices on the left hand side,
and characters on the right hand side. The reason it is not entirely symmetric
is that there are multiple social practice instances for each social practice type
(e.g. there may be two instances of the whist game practice type occurring
simultaneously in two different rooms), but there is only one character instance
for each character file.

The diagram does not call out the drama manager explicitly. This is because
each episode’s drama manager is implemented as a special type of social-practice.
A drama manager is not a new type of entity: it is just a particular type of
practice®.

5 How We Represent the World

5.1 The world is everything that is the case

In the Praxis system, the simulation-state is entirely determined by a set of
sentences in a modal logic®. The set of sentences is the complete simulation

4 Praxis contains a number of decisions which are logically independent. First, the
decision to model social practices as first-class objects. Second, the use of a strongly-
typed logic-formalism to model simulational state. Third, the use of Exclusion Logic
as the logic of choice.

® The drama manager is described in Section XI.

5 A modal logic, in the broad modern sense, is a logic which contains non truth-
functional operators for talking about relational structures (see [1], p. xi). Previously,
the term “modal logic” was restricted to logics which treat the standard modalities
of necessity, possibility, knowledge, belief, time, deontic modalities, etc.

10 Richard Prideaux Evans and Emily Short

state. There are no objects, or pointers, as traditionally conceived. Representing
the world-state as a set of sentences has a number of advantages:

— Visibility. The entire world-state is completely open to inspection. Nothing
is hidden. If you want to know, for example, if there is anyone in the current
simulation state who is in the same room as someone they dislike, you just
need to form the query. There is no need to ever write code to access the
state of the world because the entire state of the world is represented in a
uniform manner and is already open to view.

— Debuggability. You can place logical breakpoints to detect which prac-
tice is responsible for making a fact true. This is much more powerful than
traditional code breakpoints or data breakpoints.

— Serializability. Because the world-state is represented in a uniform manner,
it is trivial to serialize and deserialize world-state

The main advantage is visibility. We found, in previous simulations we have
worked on, that the main factor which makes it hard to improve the quality of
the Al is the difficulty in seeing the entire simulation state. Bugs lurk in the
darkness. In this architecture, where the world is a set of sentences, nothing is
hidden.

The simulator comes with a run-time Inspector, which gives developers com-
plete access to the internal state of the simulation. The Inspector allows them
to:

— find out what is true

— print all facts about an object, agent or process

— find all instantiations of a term with free-variables (e.g. find me everybody
who Brown has annoyed)

find out why an action’s preconditions have failed

find out what is causing a fact to become true

5.2 Sentences, Practices, Agents and Affordances

The world is a set of sentences in a formal logic. Sentences which contain the
distinguished process keyword make practices active. Sentences containing the
distinguished agent keyword makes agents active. These practices provide affor-
dances to the agents. When an agent chooses to perform one of these affordances,
the world-state is changed: sentences are added and removed from the database.
The database changes can change the set of available practices, and the loop
begins again. In summary:

— Sentences being true make practices and agents active

— Practices propose affordances to agents

— Performing affordances updates sentences in the database (which might
mean that different practices are now available, providing different affor-
dances)

The AI Architecture of Versu 11

6 Exclusion Logic

The world-state is defined as a set of sentences in a logic called Fzclusion Logic
[5]. This modal logic is particularly well-suited for modelling simulation state in
general, and social practices in particular.

Given a set S of symbols, the literals” in Exclusion Logic are defined as all
expressions of type X in:

Xu=5]5X|SX
We use the ! and . operators to build up trees of expressions. For example:

— brown.sex!male : Brown is male

— brown.class!upper : Brown is upper class

— process.dinner.dining_room.participant.brown: Brown is one of the people
having dinner in the dining room

— process.dinner.dining_room.participant.lucy : Lucy is one of the people hav-
ing dinner in the dining room

Asserting that A.B is claiming both that A, and that one of the ways in which
A is B. Saying that A!B, by contrast, is to say that B is the only way in which
A is the case. The semantics of Exclusion Logic is described in [5].

The two things that distinguish Exclusion Logic from traditional predicate
logic are:

— The ability to directly represent tree structures
— The exclusion operator

6.1 Exclusion Logic Literals Represent Tree Structures
Consider the following facts about Brown:

— brown.sex!male

— brown.class!lupper

— brown.in!dining_room

— brown.relationship.lucy.evaluation.attractive!40
— brown.relationship.lucy.evaluation.humour!20

This is a declarative representation of a tree structure, implemented as a trie[9].
A group of shared literals has a shared prefix (in this case, “brown”), and the
sub-tree can be referred to directly by its prefix. The sub-tree can be removed

" The database (representing the current world state) is just a collection of ground
literals. But the queries that can be expressed in the Praxis language are all propo-
sitions of type P, using the familiar connectives:

P:=X|PAP|PVP|-P|P—P|(V)P| ()P

12 Richard Prideaux Evans and Emily Short

in one fell swoop by deleting its associated prefix. We can e.g. remove all of the
facts about Brown by deleting the term “brown” . A prefix (referring to a sub-
tree) is the Praxis equivalent of an object in an object-oriented programming
language.

The structure of literals allows us to express the life-time of data in a natural
way. If we wish a piece of data d to exist for just the life-time of an object ¢, then
we make the prefix of ¢ be the prefix of d. For example, if we want the beliefs of
an agent to exist just as long as the agent, then we place the beliefs inside the
agent:

mr_collins.beliefs.clergymen_should_marry

Or if we want the state of a game to exist just as long as the game itself, then
we place the state inside the social practice for the game:

process.whist.data.whose_move!brown

A related advantage of Exclusion Logic is that we get a form of automatic
currying[32] which simplifies queries. If, for example, Brown is married to Eliza-
beth, then we might have “brown.married.elizabeth” in the database. In Exclu-
sion Logic, if we want to find out whether Brown is married, we can query the
sub-term directly - we just ask if “brown.married”. In traditional predicate logic,
if married is a two-place predicate, then we need to fill in the extra argument
place with a free variable - we would need to find out if there exists an X such
that “married(brown, X)” - this is more inefficient as well as being more verbose.

6.2 Automatic Removal of Invalid Data

The exclusion operator supports the automatic clean-up of data which is no
longer referenced.” For example, a social practice p might have two states: a and
b. State a might have two pieces of information, 21 and x2. State b might have
three pieces of information y1, y¥2 and y3. Being in state a would be represented
as:

pla.xl A pla.x2

State b would be represented as:
plo.yl A plb.y2 A plb.y3

Now if we are in state a (because the statement pla is true), and we switch
to state b (by inserting p!b into the database), all the local data from state a
is automatically removed from the database according to the update rules for
Exclusion Logic.

8 Compare this with Prolog - where it is much harder to remove all sentences con-
taining a particular symbol. You can remove all predicates of a certain arity, but
would have to separately remove the various different groups of predicates of different
arities.

9 This is a form of simplified belief-revision, or garbage-collection.

The AI Architecture of Versu 13

6.3 Simple Postconditions

When expressing the pre- and post-conditions of an action, STRIPS!? has to ex-
plicitly describe the propositions that are removed when an action is performed:

action move(A, X, Y)
preconditions
at(A, X)
postconditions
add at(A, Y)
remove at(A, X)

STRIPS finesses the frame-problem[12] by using the closed-world assumption:
anything that is not explicitly specified as changing is assumed to stay the same.
But there is still residual awkwardness here: we need to explicitly state that
when A moves from X to Y, A is no longer at X. It might seem obvious to us
that if A is now at Y, he is no longer at X - but we need to explicitly tell the
system this. As Jeff Orkin writes [19]:

It may seem strange that we have to delete one assignment and then
add another, rather than simply changing the value. STRIPS needs to
do this, because there is nothing in formal logic to constrain a variable
to only one value.

Exclusion Logic is a formal logic designed to express directly the natural idea
that certain variables can only have one value. The interpretation of the exclusion
operator means we do not need to specify the facts that are no longer true:

action move(A, X, Y)
preconditions
A.at!X
postconditions
add A.at!yY

When using Exclusion Logic, the postconditions are shorter and less error-prone.
The “!” operator makes it clear that something can only be at one place at a
time.

6.4 The Exclusion Operator Helps the Author Specify Her Intent

The semantics of the exclusion operator remove various error-prone book-keeping
tasks from the implementer. But perhaps the exclusion operator’s main benefit
is that it allows the Praxis script-writer to specify her intent more precisely.
When we specify that, for example!!:

10 These comments apply equally to PDDL (the Planning Domain Definition Lan-
guage).

11 This is a typing judgement in Praxis, saying that a variable A (of type agent) has a
unique sex G (of type gender)

14 Richard Prideaux Evans and Emily Short

A(agent) .sex!G(gender)

We are saying that an agent has ezactly one gender. This exclusion-information
is available to the type-checker, which will rule out any piece of code which
suggests that an agent can have multiple genders.

Some modern logic-programming languages are starting to add the ability
to specify uniqueness properties of predicates [31], but they treat uniqueness
properties as meta-linguistic predicates. Praxis is the first language to treat
exclusion as a first-class element of the language.

6.5 Support Tools for Praxis

A domain-specific language needs a number of support tools before it becomes
really usable for production work. Praxis comes with a number of tools'? to
make the script-writer’s life easier:

— A type-checking system to find errors early. Praxis is strongly, but implicitly
typed'3: the author does not have to specify the types of all variables -
instead, the system will infer the types of all variables and complain if a
consistent assignment cannot be found.

— An Inspector for giving the author run-time access to the precise state of
the simulation

— A Playback facility. The game stores the exact set of actions chosen by the
player during a game, and writes them to a file. This allows the author to
reproduce exactly a previous play-through. This playback feature required
that we kept the simulator fully deterministic at all times.

— A Stress-Test tool which runs hundreds of instances of the game simultane-
ously, with all characters controlled by the computer. By running multiple
instances of the game at high speed, we are able to find bugs and anomalies
quickly.

7 Social Practices

7.1 Regulative Versus Constitutive Views of Social Practice

At the heart of the technical architecture is a commitment to a constitutive view
of social practices. I will explain what this means by contrasting it with the
alternative regulative view of social practices.

12 When designing the inspection tools, we were heavily indebted to the sophisticated
authoring tools in Inform 7.
13 Compare ML and Haskell.

The AI Architecture of Versu 15

The Regulative View of Social Practice Imagine a group of agents, each
with his own set of goals and available actions. At any decision point, an agent
chooses the action which best satisfies his goals (or expected goal satisfaction,
once we take probabilities into account).

In this individualist picture, a social practice is just a set of restrictions on
available actions which allows us to collectively increase our utility. For example,
the driving-on-the-left practice restricts our actions (we can no longer drive on
the right). We are prepared to accept this limitation on our freedom because it
lowers the probability of a collision.

The Constitutive View of Social Practice According to the regulative
picture, agents could act before they participated in practices. They already
had goals, and already understood what actions were available to them. These
were already given. All the social practices does is allow us to solve various
coordination problems.

The constitutive view (first articulated explicitly by John Rawls in [20])'4
rejects this assumption. According to the constitutive view, the action is only
available within the practice. A nice example from Rawls’ original paper is the
game of chess: you can move a carved piece of ivory from one square to another,
but you can only move your pawn to King 4 if you are playing chess. Again, I can
utter a series of noises which sounds like “Ay doo”, but this only constitutes a
marriage-vow in the context of a wedding-ceremony. The action is only available
in the practice.

One way to see the need for a constitutive view of practice is to consider the
vast array of actions I could possibly do now. Sitting here right now, I could lend
the stranger on my left 10 pounds; I could tell the other stranger on my right
that Paris is the capital of France; I could ring up my wife and enumerate the
prime numbers.

With an infinite number of actions available to me, why am I not overwhelmed
with choice? How do I ever find the time to make a decision?

In the constitutive view of practice, the affordances are always embedded in
the practices. The agent does not see the action as available unless he is already
participating in the practice which makes it visible. The agent isn’t overwhelmed
by an infinite number of choices because he only sees the affordances that are
provided by the social practices he is in. It is this constitutive model of social
practices which lies at the heart of our simulation. In our implementation, we
take this idea literally: every affordance is contained within a practice and is
only available if that practice is instantiated.

7.2 Role Agnosticism

Tomasello [33] has argued that one of the critical differences between the great
apes and humans is that, although both apes and humans can participate in

14 But this view has a long history and can certainly be traced back to Wittgenstein
[29] and Heidegger[3], and arguably to Hegel[2] and beyond.

16 Richard Prideaux Evans and Emily Short

practices, only humans are able to effortlessly switch roles. As soon as a human
infant (as young as two) participates in a practice, she adopts a birds-eye view
of the practice, which means she is able, after participating once, to suggest
we play again, with roles reversed. Other creatures do not exhibit the ability to
play a practice from multiple roles. A great ape can participate in many sorts
of practice - but he is locked in to the role which he played. He cannot see
the practice from a bird’s eye perspective. This is a distinguishing features of
humans.

One of our big goals in Versu was that each practice would be role-agnostic:
it would be authored without knowing which roles were being played by NPCs
and which by human players.

7.3 Representing Social Practices

A social practice is a hierarchical collection of affordances, providing various
options to its participants (who are characterised solely in terms of the roles
they are playing).

A social practice is represented with the keyword process. Processes are
specified with declarations, for example:

process.greet.X(agent) .Y (agent)
action "Greet"
preconditions
// They must be co-located
X.in!L and Y.in!L
postconditions
text "[X] says ’Hi’ to [Y obj]"
end

Here the term associated with the process is
process.greet.X.Y.

The processes can then be instantiated any number of times by adding sentences
to the knowledge base. For example, if we add the following assertion:

process.greet.jack.jill

then the process will be active with substitutions [jack/X, jill/Y]. If, furthermore,
Jack and Jill are in the same location:

jack.in'hill
jill.in'hill

Now the preconditions of the action are satisfied and the Greet action will be
available to Jack on Jill. If we added another term:

process.greet.jill. jack

The AI Architecture of Versu 17

then another instance of the process will be active with substitutions [jill/X,
jack/Y], and the Greet action will be available to Jill on Jack.

The language for describing actions has a number of the features described
in PDDL[14]. In particular:

— Disjunctive preconditions

— Negation in preconditions (using negation-as-failure)

— Quantified preconditions (both universal and existential quantifiers, can be
nested arbitrarily)

— Expression evaluation (the ability to perform numeric calculations)

— Domain axioms (the ability to define new predicates and relations in terms
of existing relations)

— Conditional effects in postconditions

7.4 Respecting the Normative

Many of the practices we authored had their own individual sense of the nor-
mative. During a conversation, you should respond when spoken to, you should
respect the salient topics, etc [25] [30]. During a meal, you should be polite about
the food, etc. But the player still has a choice - she can always violate the norms
if she wants to! The major requirements for modelling the normative were that:

— NPCs understand what they should and shouldn’t do
— NPCs, if left to their own devices, should respect the norms (unless they have
some particularly acute personality deviation which overrides their urge to
respect the social mores)
— But the player should be free to violate these norms at any time!
— If the player violates a norm, the others should notice and respond accord-
ingly
To get NPCs to respect norms, we add postconditions to norm-violating actions
to mark that a norm has been violated. We similarly add postconditions to ac-
tions which should be performed to mark that a requirement has been respected.
We give most!® agents strong desires to respect the social norms. When deciding
what to do, the agents will see the consequences of their actions. If they see a
norm-violation consequence, that will be a major disincentive.

Although NPCs typically do not violate norms, the player is allowed to do
whatever she likes. If the player does step outsides the bounds of propriety, the
NPCs should notice and respond accordingly. Getting drunk, insulting the wine,
refusing to answer when spoken to - all these norm-violations are only fun to
play if they are noticed. When a norm-violation occurs, the practice which kept
track of the norm spawns a sub-practice whose job is to mark that a violation
has occurred. This responsive practice will provide options to the others: disap-
proving, forgiving, getting angry, and even (in extreme circumstances) evicting
the character altogether.

!5 The drama manager will occasionally lower these desires for certain agents (e.g.
our rakish poet, Brown) when it wants them to behave outlandishly for dramatic
purposes.

18 Richard Prideaux Evans and Emily Short
8 Agents

8.1 Autonomy

When an agent is deciding between various possible actions, he looks at the con-
sequences of each action, and chooses the action which best satisfies his desires.
He uses forward-chaining, rather than goal-directed backward chaining!®.

This is a form of utility-based reactive action-selection ([11, ?]), rather than a
full-blown planner. But it is an unusual utility-based method in that it is highly
responsive to the fine details of the simulation.

In most systems which use utility-based decision-making, the agent’s estima-
tion of the consequences of the action is much simpler than the actual conse-
quences. For example: in The Sims, when a Sim decides to go to the toilet, the
actual consequences of the action are:

— Routing into the bathroom
— If there is someone already in the room, he expresses frustration, and exits
— Otherwise, he locks the door, sits down, and relieves his Bladder motive

These are the actual consequences. But the estimated consequences are much
simpler. When considering going to the toilet, all he sees about the future is:

— He will relieve his Bladder motive

This discrepancy (between the actual and the estimated consequences) creates
all sorts of issues. One particularly aggravating problem is that the estimated
consequences miss all the conditional effects: effects which may or may not hap-
pen depending on various other aspects of the simulation state. For example:
whether or not the going-to-the-toilet will be successful depends on whether
there is somebody already in the bathroom. But the Sim does not consider this
when planning: he thinks the action will always be successful. If there is in fact
someone else in the bathroom, the Sim will attempt to use the toilet, but be
thwarted by the other person. Then he will try to choose another action; his
Bladder motive will still be unsatisfied, and he will attempt to use the toilet
again... This behaviour can repeat indefinitely!”. Now there are various kludges
we can put in to avoid this particular problem. But the best way to fix this gen-
eral class of problems is to address the root cause: instead of using a simplified
estimation of the consequences, compute the actual consequences for decision-
making.

16 SHOP[17] uses a similar approach: “Since SHOP always knows the complete world-
state at each step of the planning process, it can use considerably more expressivity
in its domain representation than most planners.”

17 The Sims is not an isolated example. FEAR contains exactly the same discrepancy
between the planner’s understanding of the action effects and the actual gameplay
effects. In [19], notice the two separate fields in the Action class: m_effects for the
planner’s understanding of the effects, and the ActivateAction() function for the
actual gameplay effects.

The AI Architecture of Versu 19

The NPCs in Versu look at the actual consequences of an action when decid-
ing what to do. When considering an action, they actually execute the results
of the action - rather than some crude approximation. Then they evaluate this
future world state with respect to their desires. Then we undo the consequences
of the world-state!®.

This sort of decision-making is broad rather than deep. It doesn’t look at the
long-term consequences of of an action - but it looks at all the short-term con-
sequences. By looking at a broad range of features, it is able to make decisions
which would typically only be available to long-term planners. For example, the
NPCs are able to play a strong game of whist. When considering the various
cards the whist-player can play, the decision-maker computes the various fea-
tures of a move (whether it counts as winning-the-trick, whether it counts as
throwing-away-a-card, trumping, getting rid of a suit, etc). These conditional-
effects determine the score of playing the card. Using such simple appraisals, and
giving the NPCs suitably-weighted desires to perform actions which satisfy these
appraisals, is all that is needed for the NPCs to automatically play a strong game.
There is no need for any separate sui-generis whist-playing decision-procedure.

Our short-term planner elegantly handles large dynamic sets of goals, allow-
ing characters to select actions that advance multiple goals simultaneously.

Utility is computed by summing the satisfied desires. A want is a desire
to make a sentence true - and that sentence can be any sentence of exclusion
logic - to any level of complexity. So, for example, Brown (our rakish poet) likes
annoying upper-class men. He wants it to be the case that there exists an Other
such that:

Other.sex!male and
Other.class!upper and
is_displeased_with.Other.brown

Each want comes with an associated utility modifier. This want is tagged with
a utility-modifier of 20. Every separate instantiation of this desire gives an addi-
tional 20 score. If, for example, Brown can see that one remark would simulta-
neously annoy three upper-class men, then that remark would score three times
higher than a remark that just annoyed one.

8.2 Individuality

When attempting to model individual personalities, one common method is to
implement a small finite set of personality traits, and define a character as a

18 Tt is only because we are able to undo actions that this approach is workable. The
language instruction primitives of the Praxis language were designed to be efficiently
undo-able. If we couldn’t undo an action, the only way we could compute the actual
consequences would be by making a copy of the entire simulation state, performing
the action in that copy, and then throwing it away. But copying the entire simulation
state is prohibitively expensive when we are considering so many actions for so many
agents.

20 Richard Prideaux Evans and Emily Short

combination of these orthogonal traits [6]. We wanted a more expressive system,
in which there were an infinite number of personalities - as many personalities
as there are sentences in a language.

The fact that the planner looks at the entire simulation state means that the
range of things that agents can desire is very wide. Some examples of individual
desires:

— The doctor is sexist: he wants 3X leader! X A X.sex!male

— Brown enjoys annoying upper-class men: he wants 3X is_displeased_with.X.brownA
X.sex!male N\ X.class!upper.

— Peter doesn’t like to be alone: he hates it when 3L peter.in! LAVX X.character
X = peter — notX.in!L

The expressive range of the logic is what allows us to specify such fine-grained
personalities.

8.3 Relationships

We use role-evaluation (based on Sacks’” Membership Categorization Devices
[24]) to model many different sorts of relationships described.

At any moment, we are simultaneously participating in many different prac-
tices. In “Pride and Prejudice”, Darcy, for example, is simultaneously a member
of the gentry, a friend of Mr Bingley, a potential suitor. For each role he is play-
ing, one crucial question is how well he is playing that role. Different people have
different evaluations of how well someone is playing a role.

This concept, role-evaluation, is at the heart of the relationship model.
Just as agents can be participating in multiple social practices concurrently, just
so an agent can have multiple concurrent views about another agent.

Some of the role-evaluations we use for our Jane Austen episodes include:

— how well-bred someone is

— how properly he is behaving

— how attractive someone is (evaluating someone as a potential romantic part-
ner)

— how generous, intelligent, amusing, etc

— how well they are performing their familial role (father, mother, daughter,
ete)

— whether they are a good husband or wife

In “Pride and Prejudice”, characters evaluate each other according to their suc-
cess at these various roles:

— The Bingley sisters find Elizabeth lacking in style, taste, beauty
— They judge Jane to have low family connections
— Mrs Bennet judges Charlotte to be plain

Characters remember the reason for these evaluations!?:

19 The evaluations are stored inside the agent in terms of the form
Agent.relationship. Evaluated.role. Role!V alue! Explanation.

The AI Architecture of Versu 21

— Mr Bingley is a good suitor because he was so affable at the dance
— Mr Darcy is a bad suitor because he was rather rude at the dance
— Jane is a bad catch because her family is so badly connected

Characters make these evaluations public when prompted (or unpromptedly):

— Mrs Bennet says Darcy is a bad match for Elizabeth on account of his rude-
ness

— The Bingley sisters say Jane is a bad match for Mr Bingley on account of
her low connections

These public evaluations can be communicated from one character to another.

— Mr Wickham tells Elizabeth that Darcy is dishonourable and she believes
him

Sometimes, people disagree about their evaluations of a character:

— Elizabeth and Jane disagree about whether Mr Wickham’s dark hints mean
that Darcy is blameworthy

These evaluations affect the characters’ autonomous behaviour:

— Characters will be invited over if they are evaluated sufficiently highly

— Characters will propose if they evaluate the other as a suitable match

— Characters will display gratitude for doing favours (e.g. the wife and daugh-
ters are grateful to Mr Bennet for paying Mr Bingley a visit)

These evaluations also affect the tone of their autonomous behaviour:

— Miss Bennet is not gracious when Mrs Bennet apologizes because she is not
valued highly

— Their effusiveness in looking after somebody depends on their evaluation
(e.g. the Bingley sisters are less effusive in their concern for Jane because
they do not rate her highly)

Updating Role-Evaluations Characters can acquire evaluations in three ways:

— They can start with the evaluation hard-coded into them.

— They can acquire the evaluation when they interpret one of the other’s ac-
tions

— They can hear someone else’s evaluation and decide to believe it

Characters acquire new evaluations of others when they see them performing
actions, and interpret those actions in a particular light. These interpretations
are themselves actions which the characters decide to do - they have a choice
how to interpret others’ actions.

22 Richard Prideaux Evans and Emily Short

Relationship States Relationship evaluations are multiple and asymmetric: x
may judge y according to multiple different roles, and x’s views on y may not
be the same as y’s views on x.

But as well as these multiple views, we also model a single symmetric notion:
the public relationship state between the characters. This is the official long-
term stance between the characters: whether they are friends, lovers, siblings, or
enemies.

8.4 Emotions

We used a fine-grained set of emotional states, based on Ekman’s work [4]. An
advantage of a text-representation was that it was easy to express the various
emotional states. It would be much harder to express the fine-grained distinction
between e.g. being embarrassed and humiliated if we had to show it in a 3D face.
In order for an emotional state to be intelligible to another, the character should
be able to explain it. To do this, the character remembers who the emotion is
directed towards (e.g. I am annoyed with Brown), and the event which prompted
the emotional change (e.g. Brown’s insult).

An agent changes emotional state when performing an action. Reactions, in
particular, are a rich source of emotional state changes.

Our representation of agent’s emotional states is simple and straightforward:
the agent has only one emotional state at a time, and any new emotional state
always overrides the previous one. The agent also remembers his previous emo-
tional state, so that we can have autonomous decisions based on mood-switching.
An agent, for example, may not like to laugh when he is already in a bad mood.

8.5 Beliefs

The world-state is shared amongst the agents. We do not, for memory reasons,
give each agent his own separate representation of the world. Instead, we give
them all access to the one authoritative world model. This means, of course, that
misunderstandings etc cannot be implemented fully.

For specific cases where we want false beliefs, or factual disagreements, we
store individual beliefs for that specific issue. So, for example, early on in the
ghost story, when there are various spooky (but inconclusive) happenings, the
characters can disagree about whether these events are caused by a ghost or there
is some more scientific explanation. Another example: typically, inter-personal
evaluations are shared and accessible to all. But if we want some people to know
- and others to be unaware - that Frank loves Lucy, then we store this as a belief,
and gate certain actions on whether the actor believes that X loves Y, rather
than on whether it is true that X loves Y.

8.6 Character Arcs

The most complex part of a character description file is the character-arc: a
story-arc for that individual character, describing how his objectives and emo-
tions change over time. This arc references only facts about that individual

The AI Architecture of Versu 23

character, so it can be brought into any story in which the character is placed.
Our philandering poet, Brown, for example, might choose to take another mis-
tress - but once he has seduced her, we might want him to start to feel bored and
trapped once again. If a social practice provides choices about external low-level
actions, the character arc represents internal high-level choices: does Brown want
to take another mistress, or focus on improving his poetry? The author designs
the character arc to give the character choices about what he wants to be - not
just what he wants to do.

The character arc also specifies a variety of possible epilogues for the char-
acter. Each epilogue describes the end-state of the game from the perspective
of that characters defining life-choices. If Brown decides to distract himself from
his malaise by taking another mistress, this could end up with his ditching her,
or with him deciding - to his own great surprise - that he will remain committed
to her after all. The character- arc has its own sense of drama, separate from the
story: it is here that the character may achieve self-awareness, sink into despair,
or transform himself.

True character transformation comes about in the moments where a character
decides to set aside an old want, adopt a new one, or act in contravention of
his own desires. This ability — the ability to choose an affordance that is not
what the character simulation would prefer — is not available to NPCs - it is
only available to the player. The natural result of this is that the characters
controlled by humans have opportunities for change and development, while
characters controlled by NPCs will not exercise those opportunities; instead,
they will continue to play supporting roles.

The mixing of character arcs with episode story management also produces
a productive interference when it comes to the meaning of the stories as they’re
experienced and interpreted by the player. For instance, the story manager of
the murder mystery might dictate that the characters can identify and confront
the murderer and then choose either to turn him in to the law or to help con-
ceal his guilt. These might be the only possibilities recognized by the episode
structure. However, different motivations might manifest themselves as a result
of the character arcs. For instance, if the character who discovers the murderer’s
guilt is in betrothed to the murderer’s son, this presents a motivational question
to the player: should she push to convict out of a love of justice, knowing that
this will swamp the family in scandal, lead to the end of her engagement, and
cause a disappointing end to her personal story arc?

Such dilemmas as these are not explicitly modeled by Versu; rather, they
fall out of the creative interference between characters who have personal mo-
tivations and desires for the outcome, and narrative cruxes that force dramatic
change.

24 Richard Prideaux Evans and Emily Short

9 The Core Model of Beliefs, Emotions, Relationships
and Evaluations

9.1 Inter-Practice Communication via the Core Model

Social practices typically track internally one or several variables pertinent to
that practice: for instance, a dinner practice might keep track of how many guests
had been served wine, or which course it was; a whist practice might track which
agents were playing in the game, what cards they had been dealt, and which suit
was trumps.

This kind of internal information, however, does not allow the different prac-
tices to communicate with and affect one another. Instead, the agent information
described above — consisting of relationship states, beliefs, emotions and evalu-
ations — serves to communicate between practices.

To be effective — that is, to cause repercussions for other characters and
changes within the story a character’s actions within Versu need to change one
or more of these core model elements.

Changes to emotional states might last for a few turns and might affect the
way the character is described doing things (and her appearance on screen), but
a character will experience many emotions in the course of a game. Unless a
given mood affects one of the longer-term decisions, its unlikely to determine
how the story ends.

By contrast, characters evaluations of others play into relationship state de-
cisions. A character who evaluates her flirt as cruel or bumbling will have the
opportunity to begin a “breaking up” practice, which will end the romantic re-
lationship state between these characters and produce a negative “rejected flirt”
relationship state instead. It does not matter to the core model how the char-
acter’s flirt made himself unacceptable: it might be that he clumsily spilled his
wine at dinner, or stepped on her foot during a dance, or said something incon-
siderate to her mother. It might be that he committed one large transgressions
or a series of smaller ones. Regardless of the originating practice, when the char-
acter’s evaluation of him becomes too negative, the opportunity to break up will
present itself.

Relationship states and character self-evaluations are the most significant
and lasting part of the core model.

During play, a relationship state may function to make particular actions
available: for instance, the practice allowing a couple alone together to kiss will
become functional only if the pair are in a romantic relationship state.

In addition, each character in the drama begins with certain relationship or
self-belief goals. For instance:

— Miss Bates begins wishing to be friends with someone

— The poet Brown, who has a chip on his shoulder about his illegitimacy, may
have a desire to form an inimical relationship with an upper-class man

— Lucy starts out hoping either to find a protector or else to become more
confident in herself

The AI Architecture of Versu 25

Succeeding or failing to achieve these goals affects story outcomes, as each
story concludes by narrating both how the extrinsic episode ended (was the
murderer identified? was he tried?) and how the character arc went for the
player character (did Elizabeth conclude the story engaged to Mr Darcy?).

9.2 Using the Core Model to Promote Player Agency

Most of the player’s agency in the game therefore comes from using the affor-
dances made available by the social practices to affect the core model in some
fashion. In order to maximize this sense of agency, we identified the following
design goals:

— Player actions should be rewarded either with information about the world
state or changes to the world state.

— Changes to short-term qualities should happen frequently.

— Changes to short-term qualities should lead to a chance for the player to
back down or persist in an attempt. For instance, if the player’s character has
evaluated another as somewhat attractive, this should lead to opportunities
to either flirt with or ignore the object of affection — allowing the player to
indicate whether it is really her intention to try to develop a relationship
there.

— Changes to long-term qualities should be strongly marked. If a player be-
comes someone’s friend, flirt, enemy, etc., that event should entail several
moves of interaction and be marked out clearly by the user interface. (Cur-
rently, making a friend, flirt, or enemy is an achievement which is strongly
noted when it occurs.) These events are key to the story and should be noted
as significant accomplishments.

— Relationship state changes should require active choice from both charac-
ters. It should never be possible for an NPC unilaterally to change his or
her relationship to the player, though the NPC might offer the player an un-
avoidable choice, either prong of which will have a significant state-changing
outcome (e.g. “marry me or we will break up”).

9.3 Using the Core Model with Autonomous Agents

The use of autonomous agents also introduces an additional design goal into the
system. As explored above, each agent may have arbitrarily complex preferences.
Lucy likes to evaluate other characters positively. Miss Bates likes to be in a good
mood. Mr Quinn likes to have a bad opinion of Frank Quinn. However, these
preferences can only produce significantly different behaviour between agents if
the range of available affordances, and the effect of those affordances, is suf-
ficiently great. Otherwise, agents will be comparatively scoring just a handful
of options, and they are unlikely to produce distinct behaviour, even if their
formulae for scoring differ widely. This produced an additional design goal:

— Individual actions should ideally produce change to multiple qualities or
types of quality.

26 Richard Prideaux Evans and Emily Short

This is especially easy to demonstrate with respect to conversation. A given line
of conversation may accomplish any of the following tasks:

— shift the speaker to a new belief about the world

— communicate a belief

— shift the speaker to a new emotion

— communicate one or more emotions

— shift the speaker to a new evaluation of another character
— communicate an evaluation of another character

— shift the speaker to a new self-evaluation

— communicate the self-evaluation of the speaker

— count as an atomic action to which others may react

For example: Mr Collins may speak about how Lady Catherine, his patroness,
has complimented the sermons he preached at her parish. This quip?? is marked
to do each of the following things:

— communicate that Mr Collins has a positive self-evaluation about intelli-
gence, inviting listeners to accept or reject this view of Mr Collins

— communicate that Mr Collins admires Lady Catherine’s status and patron-
age, inviting listeners to accept or reject this view of Lady Catherine

— shift Mr Collins to the “pleased” emotional state, because he enjoys dwelling
on the compliments he has received

"’

Likewise, Lucy might say, “Oh no! I'm afraid there must be a ghost here!” when
she has not previously believed in ghosts. That quip would have the following
effects:

shift to a belief in ghosts, changing Lucy’s mentality on this point for the

remainder of the game

— communicate a belief in ghosts, allowing other characters to accept this belief
or rebut it

— shift to a fearful emotion

— communicate a fearful emotion, allowing other characters to offer Lucy com-

fort

...so that it would be possible for other characters to respond by reassuring her,
telling her that she’s superstitious to believe such a thing, or agreeing that there
probably is a ghost.

Coding speech and other social actions in this way allows agent-driven char-
acters to make a more nuanced use of their various wants. It also produces texts
in which characters appear to react to both surface and subtext, as in this final
example: Mrs Elton might say, “What a handsome parlour you have; it is almost
as graciously appointed as my sister’s!” This quip would accomplish each of the
following:

20 Dialog is authored in units called quips, which are combinations of a text template
together with a collection of possible effects on social and emotional state.

The AI Architecture of Versu 27

— communicate a moderately positive status view of the person addressed
— communicate a superior status view of her own family

— constitute a “be complimentary” action

Some characters might respond to the “compliment” by thanking Mrs Elton;
others might reply by being self-deprecating about their status or by putting
down Mrs Elton’s family in order to correct her self-evaluation that they dis-
agreed with.

10 The Story Manager

Unlike some other systems [22], Versu does not have a general-purpose drama
manager which dynamically combines story elements to produce a wide variety
of different stories. Instead each individual episode has its own individual story
manager, which encodes the author’s understanding of the narrative goals for
that particular episode. A particular story (say, a murder mystery) has certain
key recognisable moments (the victim makes himself unpopular, the victim is
killed, the body is discovered), and the story manager is responsible for making
sure these events happen at the right moment.

The story manager for an episode is a high-level director who does not like
to micro-manage. Given a stock of characters and a set of social practices, all
our story manager likes to do is initiate practices, watch their progress, and
insert occasional changes. It leaves the performance of those practices, and the
individual decisions, to the individual autonomous NPCs.

The story manager is a reactive process (itself implemented as a social prac-
tice). It starts by creating characters and placing them in initial social situations.
Once these characters have been given some interesting goals, it often leaves
those autonomous characters to their own devices for some time, before the next
intervention. The story manager watches what is going on, spawning new social
practices, and tweaking individual goals, to keep things moving.

For example, in the murder-mystery, the story manager wants, after the meal
has finished, for the people to gather together to perform some sort of group
activity: reading together, music, whist. But it doesn’t mind which particular
activity - so it spawns different practices on different occasions, leading to sig-
nificantly different run-throughs.

Our story managers are significantly less ambitious than some systems [22].
They do not plan ahead, anticipating the narrative consequences of various dra-
matic moves, scoring each move according to narratological criteria. Instead,
our story-managers are reactive processes, hand-crafted for each episode. This
gives the author strong control over the outcome and quality of the story, at the
expense of emergence at the narrative level.

28 Richard Prideaux Evans and Emily Short

11 Related Theory: Computational Models of Social
Practice

11.1 Schank and Abelson’s Scripts

Schank and Abelson’s work on scripts ([27, ?]) has been hugely influential. They
were one of the first in the AT community to articulate the important idea that
an individual action is not intelligible on its own: its intelligibility comes from
the social practice in which it is embedded. They used the term script to describe
a computer model of a routine social practice: eating at a restaurant, travelling
on a bus, visiting a museum. A script is a state graph containing a distinguished
path which is marked as “normal”. (For example, in the restaurant script, the
normal path involves the customer ordering, eating the meal, and then paying
for it).

The script describes coordination of multiple actors: characters were assigned
to roles and the script understood which actions were expected for each role in
each state. The script also achieves continuity over time: an individual agent’s
sequence of actions over time is intelligible as a sequence of causally-linked ac-
tions as the script travels through various states.

Schank and Abelson’s theory accommodates the important idea that multiple
scripts can be running concurrently, and can interfere with each other. One
example they give is:

John was eating in a dining car. The train stopped short. John’s soup
spilled.

Here, the eating script and the being-on-a-train script are running concurrently.
A problem in the train script then causes an interference in the eating script.

Schank and Abelson’s work on scripts was a major source of inspiration to us.
But our model of social practice is different in a number of ways. First, Schank
and Abelson used scripts as a way of understanding natural language stories,
while we use social practices as a way of guiding autonomous behaviour in an
interactive system. Second, Schank and Abelson use so-called “scruffy” methods
to model social practices (Conceptual Dependency Theory is a graph-based rep-
resentation without a formal semantics), while we model the entire simulation
state declaratively using a modal logic. (In Versu, we tackle “scruffy” research
problems with “neat” methods). Third, a Schankian script describes a social
practice from a particular perspective: from the viewpoint of one distinguished
role. Schank and Abelson are explicit about this ([27], p. 210):

A script must be written from one particular role’s point of view. A
customer sees a restaurant one way; a cook sees it another way.

Again [28] p.152:

A script takes the point of view of one of these plavers, and it often
changes when it is viewed from another player’s point of view.

The AI Architecture of Versu 29

In Versu, by contrast, a social practice is authored from a birds-eye perspective:
the domain-specific-language supports an authoring style in which practices are
agnostic about which particular character is playing which role. In Versu, a
restaurant script is written once and incorporates both the customer’s and the
cook’s perspectives.

11.2 Moses and Tenenholtz’s Work on Normative Systems

Moses and Tenenholtz [16] have also developed a computational model of social
practices. They define a normative system as a set of restrictions on available
actions such that, when these restrictions are respected, there is a guarantee that
a certain desirable condition obtains. For example: on a busy road, the desirable
condition might be that no cars hit each other, and the restriction might be that
all cars drive on the right hand side of the road. Part of the power of their work
is that, using a type of modal propositional logic, they can prove that certain
norms guarantee certain desirable properties.

Their approach is related to ours in that they use formal logic to describe
social systems. But there is one fundamental difference: they see social systems
as restrictive rather than constitutive. Imagine an agent who already has a set
of available actions. A normative system, in their sense, provides a restriction
on the set of actions. The restriction on the agent’s freedom is offset by the
(provable) desirable properties of everyone obeying that restriction: forcing me
to drive on the right is a restriction on my ability to drive on the left, but the
guarantee that I can drive without collision offsets that restriction. Versu, by
contrast, uses a constitutive model of social practice in which social practices
make new actions available: placing a card down on the table only counts as
trumping with the Jack of Spades within the context of the whist game in which
it is embedded.

12 Related Interactive Systems

Starting with Tale-Spin[15], there have been many attempts to generate narra-
tive using a simulationist agent-driven architecture. The recurring problem with
these attempts has been that the generated stories lacked narrative coherence.
It has proven very hard for an author to achieve any sort of narrative control by
fiddling with the parameters of individual agents. When building Versu, we were
hoping to find a spot in design space that has the generativity of simulation,
while also having a satisfying degree of narrative coherence and author-ability.

In a recent paper [21], Mark Riedl and Vadim Bulitko provide a clear taxon-
omy for describing design choices in interactive narrative systems. Two funda-
mental questions that they are consider are:

1. Authorial intent. To what extent does the human author’s storytelling
intent constrain the narrative? How much of the story is decided in advance
by the author, and how much is generated by the player and computer during

play?

30 Richard Prideaux Evans and Emily Short

2. Virtual character autonomy. Does each individual character make up his
own mind, or is each character merely a puppet controlled by a centralised
drama manager?

In terms of authorial intent, Versu is somewhere in the middle between a manu-
ally authored choose-your-own adventure, on the one hand, and an automatically-
generated emergent narrative, on the other. Each episode in Versu comes with its
own episode-specific drama-manager: a reactive agent which mostly sits back and
watches, occasionally intervening to push the narrative forward. In this respect,
Versu is rather like Facade: for each episode, there is a specific situation which
has been carefully authored, but the exact path taken through the narrative
landscape - the how and the why - is up to the player to determine?!.

In terms of character autonomy, Versu is strongly simulationist. Each char-
acter chooses his next action based on his own individual beliefs and desires. It
is very rare indeed for the drama manager to override the characters’ autonomy
and force them do something. Instead, the drama manager typically operates at
a higher level - by creating new social practices, or tweaking the desires of the
participants.

Unusually, the drama manager is also modelled as an autonomous agent, and
chooses which (meta-level) action to do based on her own (meta-level) desires.
This means that in some episodes, the player can actually be the drama manager.

12.1 Comparisons with Facade

Playing the same scene from multiple perspectives Whereas Facade chose
a middle-ground between the story-driven and agent-driven approaches, Versu
is much more heavily agent-driven and simulationist. At the heart of Versu’s
simulation of social practices is a distinction between the roles in the social
practice and the characters who are assigned to those roles. Because the player
can play different roles in a situation, and can assign many different permuta-
tions of characters to the roles, a Versu situation has much more variation and
replayability than the Facade scenario. If we were to implement a version of the
Fagade scenario in Versu, the player would not be constrained to playing the
guest - she could also play Trip or Grace. Further, in a Versu version of Fagade,
the player could assign different characters to the roles. The player could assign,
say, Mr Darcy to play the male host, and Elizabeth Bennett to play the female
host, and see how differently it plays out.

The difference between joint behaviours and social practices A story-
driven interactive narrative lets a single drama manager determine what happens
next. (This provides continuity at the cost of emergence). At the opposite ex-
treme, an agent-driven interactive narrative lets each individual agent determine

2! Versu’s drama manager is rather less ambitious. Facade models a sense of rising
tension and chooses the next beat by finding the one which most closely matches
the intended current tension. We do not do this.

The AI Architecture of Versu 31

what he will do next. (This provides emergence at the cost of continuity). One
of the most striking architectural ideas in Facade is the use of joint-behaviours
(JBs) which coordinate a group of agents and are intermediate between individ-
ual agents (on the one hand) and a single drama manager (on the other). A joint
behaviour can express synchronisation between its participants and can enforce
continuity between individual behaviours. But a joint behaviour, as Mateas and
Stern use it, is more restrictive than a social practice in that:

— A joint behaviour (JB) is a way of coordinating NPCs - there is no equivalent
of a joint behaviour for coordinating PCs - or for coordinating a mixture of
PCs and NPCs

— When an NPC is deciding whether to enter a joint behaviour, this decision is
not based on his individual personality or desires. Deciding whether to join
in depends only on whether the NPC can participate (whether he has an
individual behaviour which matches the specification of the joint behaviour)
- and not on whether he wants to?2.

A social practice is like a joint behaviour in that it is responsible for coordination
and continuity. But it is more general in two ways. First, a joint behaviour
coordinates NPCs only, while a social practice can coordinate both NPCs and
PCs together. Second, a social practice does not wrest control from the individual
agent - it always respects the individual agents’ autonomy. It provides suggestions
- but leaves it up to the individual agent what to do. In Versu, the social practice
is a coordinating entity which is intermediate between individual agents and a
drama manager - but this coordinating entity does not wrest control from the
individual agents. In Versu, it is always the individual agents who decide what
to do.

What this discussion shows is that the broad question of virtual character
autonomy turns out, on closer inspection, to divide into three separate questions:

— What sort of entity controls decision-making?

— What sort of entity provides coordination between agents?

— What sort of entity provides continuity over time between the actions of a
single agent?

Facade answers all three questions in the same way: the joint-behaviour pro-
vides coordination, continuity, and is also responsible for making decisions. In
Versu, there are separate answers to these questions: the social practice provides
coordination and continuity, while the individual agent makes the decisions.

22 See [7] p.75: “If all agents respond with intention-to enter messages, this signals
that all agents in the team have found appropriate behaviors in their local behavior
libraries.” The only way in ABL for an individual agent’s personal preferences to
affect the decision to join in is if that preference is added as an explicit precondition:
“Note that the preconditions can also be used to add personality-specific tests as to
whether the Woggle feels like playing follow the leader” ([7] p.78). As Mateas later
acknowledges, “A possible objection to pushing coordination into a believable agent
language is that coordination should be personality-specific; by providing a generic
coordination solution in the language, the language is taking away this degree of
authorial control” ([7] p.226).

32 Richard Prideaux Evans and Emily Short

The cost of content production The scenario in Fagade takes about 20 min-
utes for the player to complete. This episode took 3+ man-years to create. A
comparable 20 minute length episode in Versu takes about 2 months to cre-
ate. Versu also contains longer episodes. The ghost-story, which takes 45 to 60
minutes to complete, took 6 months to produce.

In terms of the number of behaviours, Facade has 30 parametrized speech
acts created during the 3+ years in development. Versu, by contrast, has more
than 1000 parameterised actions, authored in 1 year in development.

We attribute our faster content production time to two main factors. First,
using text output rather than 3D animated characters saved us a lot of produc-
tion time. Second, the domain-specific language in which we authored behaviours
(Praxis) was a very high-level declarative language for creating content. A high-
level declarative language can express behaviour more compactly than a proce-
dural language?3.

12.2 Comparisons with Prom Week

Prom Week[13] is a social simulation of high-school student social-life devel-
oped by a group at UCSC?4. At a high-level, Prom Week has a lot in common
with Versu: they are both aiming to provide interesting individual characters in
dramatic situations. But at the ontological level, there are some fundamental
differences.

Activity in Prom Week involves a sequence of discrete speech acts. In Versu,
individual actions are coordinated by social practices which provide meaning to
sequences of actions. For example, a game of whist involves a sequence of actions
by multiple participants. These actions make sense as a whole because they are
all contributing to the one unifying practice: the game.

A concrete example: suppose one character suggests to some others that
they retire to the drawing room to listen to some music. Now in Prom Week,
this request would be an individual speech act: others would accept or reject this
proposal, and then the speech act would be over. But in Versu, this suggestion is
part of a larger social practice: the group deciding what they should do next. This
larger practice involves the group as a whole achieving consensus (or failing to
achieve consensus) on what they should do. Others may agree with the proposal
to listen to music, or they may suggest an alternative pastime (reading, dancing,
whist). Others may take sides, attempt to dominate, or back down. In Versu,
the simple request speech-act is embedded within a larger practice which gives
it intelligibility and provides continuity. In Prom Week, by contrast, behaviour
is just a sequence of isolated and unrelated speech-acts.

23 Facade is authored in ABL, a procedural domain-specific language built on top of
Java.

24 We were advisors on this project, and have had many fruitful discussions with the
developers over the years.

The AI Architecture of Versu 33

12.3 Situating Versu in Design Space

We conclude this section by relating Versu to other games in terms of the three
separable aspects of character autonomy?2®:

— What sort of entity controls decision-making?

— What sort of entity provides coordination between agents?

— What sort of entity provides continuity over time between the actions of a
single agent?

Decision Making Coordination Continuity

CYOA DM DM DM
The Sims Agent Speech Act -

Prom Week Agent Speech Act -
Fagade DM/JB JB JB
Versu Agent Practice Practice

Fig. 3. Different ways of handling three aspects of character autonomy.

In a Choose-Your-Own-Adventure (CYOA), there is one entity (the static
pre-authored story-graph, functioning as a non-reactive Drama Manager (DM))
which decides what happens next, provides coordination between agents, and
continuity between action.

In The Sims, the individual agent decides what to do next. Coordination
between agents is limited to individual speech-acts?6. In The Sims, there is no
continuity between actions over time.

Prom Week is similar, in that decisions about what to do are always made
by the individual agent. Coordination between two agents lasts for the duration
of an individual speech-act and involves an initiating sentence followed by a
response. Again, there is no continuity between actions over time.

Facgade uses a Drama Manager to decide what happens next. It uses Joint
Behaviours (JBs), described above, to achieve coordination between agents, and
continuity over time.

Versu uses the social practice to achieve coordination and continuity, but
always lets the individual agents decide what to do.

13 Limitations and Further Work

13.1 Limitations of the Agent Model

When using a utility-based decision-maker, tweaking the various desires (there
are already over 300 desires in the system) so that the preferred action scores

25 See Fig. 4.
26 Performing a speech act spawns an invisible object that lasts only for the duration
of the act, and coordinates the animations and responses of the two participants.

34 Richard Prideaux Evans and Emily Short

higher is a difficult and time-consuming tuning problem. The Inspector helps
authors understand autonomy tuning problems, by showing the scores of each
action - and the reasons why the action gets the score it does - but even with
this tool, it is a difficult and unrewarding problem.

Another limitation with the system is the way agents’ beliefs are expressed.
To simplify the implementation, all beliefs are represented as sentences involving
a two-place predicate and a pair of constants. We can represent Mrs Quinn’s
belief that Lucy is compromised by Frank Quinn, or Darcy’s belief that the
ghost was killed in the study, or Elizabeth Bennett’s belief that she should not
marry Mr Collins - but we cannot represent:

— Beliefs involving universal quantifiers e.g. “Fveryone has become insane”

— Beliefs involving existential quantifiers e.g. “the murderer is one of the guests”

— Beliefs about others’ beliefs e.g. “Mr Quinn believes that Lucy believes that
Mrs Quinn is the murderer”

13.2 Limitations of Our Representation of Social Practices

Simplifying Assumptions of the Social Model Our model of social prac-
tices simplifies in two ways. First, the agents have a shared understanding of the
state of the social practices. It is not possible in this model for two agents to have
divergent understandings of the state of the situation (for example: disagreeing
about whose move it is in a game of chess). Instead of modelling each individual
agent’s beliefs about the state of the practice, we just model the practice once
- and give agents access to it. Second, even if we did give each agent his own
individual model of the practice, so that they could diverge, there would still
be a shared understanding of the practice: both agents would agree, for exam-
ple, that greeting is something you do when you are sufficiently well acquainted.
A deeper model of practices would allow individual agents to have their own
interpretations of the practice.

Multiple Concurrent Practices Complexify Authoring One of the strik-
ing things about the architecture is that it allows multiple practices to exist
concurrently. Most of the time, there are many practices running at once, each
providing various options to the agents. It is because there are so many practices
that the player has such a wide range of options at any time.

But this complexity comes at a price: the fact there are multiple concurrent
practices complicates the tuning and debugging of the scenes. Each action from
each practice needs to be scored against all the other actions from all the other
concurrent practices.

Allowing multiple concurrent practices generates another, deeper authoring
problem. Sometimes something happens that is so obviously important that all
the other things that are going on should be forgotten, for the moment. For
example, in our murder-mystery episode, when the dead body is discovered,
there may be many other things that were going on: there may be a budding
flirtation between two of the guests, some of the characters may have got drunk,

The AI Architecture of Versu 35

or violated one of the norms of Regency England, and be getting told off. But
when the body is discovered, the affordances from these other practices should be
suppressed. The seriousness of the situation should mean jokes and flirtations are
not even considered. We currently use a rather simple mechanism for suppressing
the affordances from other practices: a dominating practice is one which, when
active, suppresses the affordances from any other practices. But this dominating
mechanism is too broad and crude for the case in hand: there are some other
practices which should co-exist with the discovery of the body: for example,
weeping at the loss of a loved one. What we really want (but don’t know quite
how to implement) is Heidegger’s idea of a public mood[3] which opens up a
range of possibilities and closes off others. In our example, when the dead body
is discovered, this should create a public mood of shock, and this mood should
reveal various practices (grieving, examining the body, wondering who could
have done such a thing) while obscuring others (drinking, joking, flirtation).

13.3 User-Generated Content

Once she is up to speed with Praxis, a writer can produce a 20 minute episode
(with a rich variety of end-states and the ability to play from multiple perspec-
tives) in 1-2 months. Although this is a significant increase in content-production
speed over Facade, for example, the speed of content production is still an issue
for us.

In order to make content production possible in a reasonable amount of time,
we have built on top of the Praxis language an authoring tool called Prompter.
Graham Nelson (author of the Inform language for interactive fiction [18]) has
assisted in the design and implementation of Prompter, which allows writers
rapidly to create scenes and dialogue in a format that resembles a play script. The
script is marked up with additional text indicating the emotional and evaluative
effects of a given piece of dialogue or action. The Prompter software then converts
the script into raw Praxis.

Prompter-generated episodes can also include other, pure-Praxis files at need,
which makes it possible to coordinate generated data with newly invented social
practices, props, and behavior.

The existence of Prompter has significantly sped up our internal writing
process, making it possible to create a substantially branching 20-minute episode
in less than a week, rather than in 1-2 months as was formerly the case.

Acknowledgment

The authors would like to thank Tom Barnet-Lamb, Chaim Gingold, ITan Holmes,
Tan Horswill, Michael Mateas, and Graham Nelson for feedback and guidance
throughout the project.

36 Richard Prideaux Evans and Emily Short
References

1. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2002)

Brandom, R.: Making It Explicit. Harvard University Press (1998)

Drefyus, H.: Being-in-the-world. The MIT Press (1990)

Ekman, P.: Basic Emotions (1990)

Evans, R.: Introducing Exclusion Logic as a Deontic Logic. Deontic Logic in Com-
puter Science. Springer (2010)

Cu N

6. Evans, R.: Representing Personality Traits as Conditionals. Proceedings of AISB
(Artificial Intelligence and the Simulation of Behaviour) pp. 64-82 (2008)

7. Mateas, M.: Interactive Drama, Art, and Artificial Intelligence. Ph.D. Thesis. School
of Computer Science, Carnegie Mellon University (2002)

8. Mateas, M., Stern, A.: Writing Fagade: A Case Study in Procedural Authorship. In
Second Person ed. Harrigan and Fruin (2007)

9. Knuth, D.: Digital Searching. The Art of Computer Programming Volume 3: Sorting
and Searching (2nd ed.). Addison-Wesley (1997)

10. Lewis, D.: Scorekeeping in a Language Game. Journal of Philosophical Logic p.379
(1979)

11. Maes, P.: How To Do the Right Thing. Connection Science Journal (1989)

12. McCarthy, J., Hayes, P.: Some Philosophical Problems from the Standpoint of
Artificial Intelligence. Machine Intelligence 4 (1969)

13. McCoy, J., Mateas, M., Wardrip-Fruin, N.: Comme il Faut: A System for Simulat-
ing Social Games Between Autonomous Characters. Proceedings of the 8th Digital
Art and Culture Conference, pp.1-8 (2009)

14. McDermott, D.: PDDL - The Planning Domain Definition Language (Version 1.2).
Yale Center for Computational Vision and Control (1998)

15. Meehan, J.R.: Tale-Spin, An Interactive Program That Writes Stories. Proceedings
of the Fifth IJCAI (1977)

16. Moses, Y., Tenenholtz, M.: On Computational Aspects of Artificial Social Systems.
Proc 11th DAI Workshop pp. 108 - 131 (1992)

17. Nau, D., Cao, Y., Lotem, A., and Muoz-Avila, H.: ”SHOP: Simple Hierarchical
Ordered Planner.” IJCAI-99, pp. 968-973 (1999)

18. Nelson, G., Short, E. The Inform 7 Manual.
http://inform7.com/learn/man/index.html

19. Orkin, J.: Three States and a Plan: The Al of FEAR.

20. Rawls, J.: Two Concepts of Rules. Philosophical Review LXIV pp. 3 - 32 (1955)

21. Riedl, M., Bulitko, V.: Interactive Narrative: An Intelligent Systems Approach. Al
Magazine vol. 34(1) (2013)

22. Roberts, D. L., and Isbell, C. L.: A Survey and Qualitative Analysis of Recent Ad-
vances in Drama Management. International Transactions on Systems Science and
Applications, Special Issue on Agent Based Systems for Human Learning, pp.179 -
204 (2008)

23. Rosenblatt, J.: Maximising Expected Utility for Behaviour Arbitration. Australian
Joint Conference on Artificial Intelligence (1996)

24. Sacks, H.: Lectures on Conversation. Kluwer (1989)

25. Sacks, H., Schlegoff, E., Jefferson, G.: A Simplest Systematics for the Organization
of Turn-Taking for Conversation. Language, vol.50 (1974)

26. Salen, K., Zimmerman, E.: Rules of Play. MIT Press (2003)

The AI Architecture of Versu 37

27. Schank, R., Abelson, R.: Scripts, Plans, Goals and Understanding. Artificial Intel-
ligence Series (1977)

28. Schank, R., Abelson, R.: Scripts, Plans, and Knowledge. IJCAI (1975)

29. Schatzki, T, R.: Social Practices: A Wittgensteinian Approach to Human Activity
and the Social. Cambridge University Press (1996)

30. Short, E.: NPC Conversation Systems. IF Theory Reader. Transcript On Press.
pp-331 - 359 (2011)

31. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of Mercury: an
efficient purely declarative logic programming language. Journal of Logic Program-
ming, vol.29 (1996)

32. Strachey, C.: Fundamental Concepts in Programming Languages. Higher-Order
and Symbolic Computation 13: 11-49 (2000)

33. Tomasello, M: Origins of Human Communication. MIT Press (2008)

34. Wardrip-Fruin, N.: Expressive Processing. MIT Press (2007)

