
Domesticating Parallelism

Linda and Friends

>cholasSudhir Ahuja, AT&T Bell Laboratories
icholas Carriero and David Gelernter, Yale University

Linda consists of a
few simple primitives
that support an
"uncoupled" style of
parallel programming.
Implementations exist
on a broad spectrum
of parallel machines.

26

Linda consists of a few simple opera-
tors designed to support and simplify
the construction of explicitly-parallel

programs. Linda has been implemented
on AT&T Bell Labs' S/Net multicom-
puter and, in a preliminary way, on an
Ethernet-based MicroVAX network and
an Intel iPSC hypercube. Although the
implementations are new and need refine-
ment, our early experiences with them
have been revealing, and we take them as
supporting our claim that Linda is a pro-
mising tool.

Parallel progranmming is often described
as being fundamentally harder than con-
ventional, sequential programming, but in
our experience (imited so far, but grow-
ing) it isn't. Parallel programming in Lin-
da is conceptually the same order of task
as conventional programniing in a sequen-
tial language. Parallelism does, though,
encompass a potentially difficult problem.
A conventional program consists of one
executing process, of a single point in,
computational time-space, but a parallel
program consists of many, and to the ex-
tent that we have to worry about the rela-
tionship among these points in time and
space, the mood turns nasty. Linda's mis-
sion, however, is to make it largely
unnecessary to think about the coupling
between parallel processes. Linda's un-
coupled processes, in fact, never deal with
each other directly. A parallel program in
Linda is a spatially and temporally un-
ordered bag of processes, not a process

graph. To the extent that process uncou-
pling succeeds, the difficulty of designing,
debugging, and understanding a parallel
program grows additively and not multi-
plicatively with the variety of processes it
encompasses.
When the simple operators Linda pro-

vides are injected into a host language h,
they turn h into a parallel programming
language. A Linda system consists of the
runtime kernel, which implements inter-
process communication and process man-
agement, and a preprocessor or compiler.
A Linda-based parallel language is in fact
a new language, not an old one with added
system calls, to the extent that the prepro-
cessor or compiler recognizes the Linda
operations, checks and rewrites them on
the basis ofsymbol table information, and
can optimize the pattern of kernel calls
that result based on its knowledge of con-
stants and loops, among other things.
Most of our programming experiments
so far have been conducted in C-Linda
(and we use C-Linda for the examples
below), but we have implemented a
Fortran-Linda preprocessor as well. The
kernel is language-independent. It will
support N-Linda for any language N.

Associated with the Linda operators is a
particular programming methodology,
based on distributed data structures. (The
language doesn't restrict programmers to
this methodology. It merely allows the
methodology, which most other languages
don't.) The distributed-data-structure

0018&9162/86/0800-0026$01.00 0 1986 IEEE COMPUTER

methodology in turn suggests a particular
strategy for dealing with parallelism. Most
models of parallelism assume that a pro-
gram will be parallelized by partitioning it
into a large number of simultaneous activ-
ities. This partitioning appears, however,
to be relatively difficult to do, especially
when we consider large multicomputers
that support thousand-fold parallelism
and beyond. In the Linda framework, we
can get parallelism by replicating as well as
by partitioning. We anticipate that it will
frequently be simpler to stamp out many
identical copies of one process than to
create the same number of distinct pro-
cesses. So the final ingredient in the Linda
framework is a strategy for coping with
parallelism by replication rather than by
partitioning.

In the following we discuss first what it
seems to us that parallel programmers
need. We then describe Linda, some pro-
gramming experiments using Linda, the
current implementation, and the project
now underway to go beyond the current
software implementation and build a
hardware Linda machine. We go on to dis-
cuss some related higher-level parallel lan-
guages that can be implemented on top of
the Linda kernel, particularly the sym-
metric languages. We close in a blaze of
speculation.

What parallel
programmers need
Many parallel algorithms are known

and more are in development; many paral-
lel machines are available and many more
will be soon. But the fate of the whole ef-
fort will ultimately be decided by the ex-
tent to which working programmers can
put the algorithms and the machines to-
gether. The needs of parallel programmers
have not been accommodated very well to
date.

A machine-independent and (poten-
tially) portable progrmming vehicle. De-
signers ofparallel languages generally hold
that programming tools should accommo-
date a high-level programming model, not
a particular architecture. But as parallel
machines emerge commercially, there has
been little effort spent on making high-
level, machine-independent tools avail-
able on them. Young debutante machines
are sometimes gotten-up in their own full-

blown parallel languages; more often they
come dressed in only a handful of idiosyn-
cratic system calls that support the local
variant of message-passing or memory-
sharing. In either case, so long as each new
machine is provided with its own parallel
programming system, programs for multi-
computer x will not only have to be re-
coded, they may need to be conceptually
reformulated to run on multicomputer y.
(This is particularly true if x is a shared-
memory machine like a BBN Butterfly I or
an IBM RP3 2 and y is a network, like an
Intel iPSC.) But users need to be able to
run parallel programs on a range of archi-
tectures, particularly now, when interest-
ing designs of unknown merit proliferate.
They need to be able to communicate par-
allel algorithms. Methodological knowl-
edge can't grow when sources are cluttered
with local dialect. Finally, they need pro-
gramming tools suited to their needs, not
to the machine's.

A progrmming tool that absolves them
as fully as possible from dealng with
spatial and temporal relatonsips among
parnllel processes. We referred to the
general problem of uncoupling above.
Uncoupling has both a spatial and a tem-
poral aspect. Spatially, each process in a
parallel program will usually develop a re-
sult or a series of results that will be ac-
cepted as input by certain other processes.
Uncoupling suggests that process q should
not be required to know or care that pro-
cessj accepts q's data as input. Instead of
requiring q to execute an explicit "send
this data toj" statement, we would rather
that q be permitted simply to tag its new
data with a logical label (for example,
"new data from q") and then forget about
it, under the assumption that any process
that wants it will come and get it. At some
later point in program development, a dif-
ferent process may decide to deal with q's
data. Under the spatially-uncoupled
scheme, this won't matter to q.

Temporal uncoupling involves similar
though perhaps slightly more subtle issues.
If q is forced to send toj explicitly, the sys-
tem is constrained to have both processes
loaded simultaneously (or at least to have
buffer space allocated forj when q runs).
Further, most parallel languages attach
some form of synchronization constraint
to send. A synchronized send operation
like Ada's entry call or CSP-Occam's out-

August 1986

put statement forces the system not merely
to load but to run the receiving process be-
fore the sender can continue. We would
rather that our parallel programs be large-
ly free of scheduling implications like
these. Not only do they constrain the sys-
tem in ways that may be undesirable, but
they force programmers to think in simul-
taneities. As far as possible, we would like
programmers to be able to develop q's
code without having to envision other si-
multaneous execution loci. To achieve
this, we would like q to be allowed to take
each new datum it develops and heave it
overboard without a backwards glance.
(We make this a bit more concrete below.)

A programming tool that allows tasks
to be dynamically distributed at runtime.
Generally there is more logical parallelism
in a parallel algorithm than physical paral-
lelism in a host multicomputer, which
means that at runtime there are more
ready tasks than idle processors. Good
speedup obviously requires that tasks be
evenly distributed among available pro-
cessors. Many systems require that this
distribution be performed statically at
load time. Sometimes, finding agood stat-
ic distribution is easy, notably when the
program's logical structure matches the
machine's physical structure. As the pro-
gram's logical structure grows more
irregular, the task gets harder, and when
the program's computational focus devel-
ops dynamically at runtime, finding a
good static mapping may be impossible.
Many important applications and pro-
gram structures fall into the first, easily-
handled category, but many more do not.
For those that don't, dynamic distribution
of tasks is essential.

A programming tool that can be imple-
mented efficiently on existing hardware.
Obviously. Parallel language research has
produced far more designs than implemen-
tations. Elegant language ideas will always
be interesting regardless of the existence of
good implementations, but parallel pro-
grammers, as opposed to language re-
searchers, require implementable elegance.

Linda
Linda centers on an idiosyncratic mem-

ory model. Where a conventional mem-
ory's storage unit is the physical byte (or

27

Figure 1. out statement: drop it in.

something comparable), Linda memory's
storage unit is the logical tuple, or ordered
set of values. Where the elements ofa con-
ventional memory are accessed by ad-
dress, elements in Linda memory have no
addresses. They are accessed by logical
name, where a tuple's name is any selec-
tion of its values. Where a conventional
memory is accessed via two operations,
read and write, a Linda memory is ac-
cessed via three: read, add, and remove.

It is a consequence of the last character-
istic that tuples in a Linda memory can't
be altered in situ. To be changed, they
must be physically removed, updated, and
then reinserted. This makes it possible for
many processes to share access to a Linda
memory simultaneously; using Linda we
can build distributed data structures that,
unlike conventional ones, may be manipu-
lated by many processes in parallel.
Furthermore, as a consequence of the first
characteristic (a Linda memory stores
tuples, not bytes), Linda's shared memory
is coarse-grained enough to be supported
efficiently without shared-memory hard-
ware. Shared memory has long been
regarded as the most flexible and powerful
way of sharing data among parallel pro-
cesses, but a naive shared memory requires
hardware support that is complicated, ex-
pensive to build, and suitable only for
multicomputers, not for local area net-
works. Linda's variant of shared memory,
on the other hand, runs both on the S/Net
and on a MicroVAX network, neither of
which provides any physically shared
memory. (Of course, Linda may be im-

Figure 2. In statement: haul it out.

plemented on shared-memory multicom-
puters as well, as we discuss below.)

Linda's shared memory is referred to as
tuple space, or TS. Messages in Linda are
never exchanged between two processes
directly. Instead, a process with data to
communicate adds it to tuple space and a
process that needs to receive data seeks it,
likewise, in tuple space. There are four op-
erations defined over TS: out(, inl,
read(, and eval(. out(t) causes tuple t to
be added to TS; the executing process con-
tinues immediately. in(s) causes some
tuple t that matches template s to be
withdrawn from TS; the values of the ac-
tuals in t are assigned to the formals in s
and the executing process continues. If no
matching t is available when in(s) executes,
the executing process suspends until one
is, then proceeds as before. If many
matching t's are available, one is chosen
arbitrarily. read(s) is the same as in(s), with
actuals assigned to formals as before, ex-
cept that the matched tuple remains in TS.

For example, executing
out("P", 5, false)

causes the tuple ("P", 5, false) to be added
to TS. The first component of a tuple
serves as a logical name, here "P"; the re-
maining components are data values. Sub-
sequent execution of

in("P", int i, bool b)

might cause tuple ("P", 5, false) to be
withdrawn from TS. 5 would be assigned
to i and false to b. Alternatively, it might
cause any other matching tuple (any other,
that is, whose first component is "P" and

Figure 3. read statement: read it and
leave it.

whose second and third components are
an integer and a Boolean, respectively) to
be withdrawn and assigned. Executing

read("P", int i, bool b)
when ("P", 5, false) is available in TS may
cause 5 to be assigned to iand false to b, or
equivalently may cause the assignment of
values from some other type consonant tu-
ple, with the matched tuple itself remain-
ing in TS in either case. eval(t) is the same
as out(t), except that eval adds an unevalu-
ated tuple to TS. (eval is not primitive in
Linda; it will be implemented on top of
out. We haven't done this yet in S/Net-
Linda, so we omit further mention of
eval.) See Figures j, 2, and 3.
The parameters to an inl or read(

statement needn't all be formals. Any or
all may be actuals as well. All actuals must
be matched by corresponding actuals in a
tuple for tuple-matching to occur. Thus
the statement

in("P", int i, 15)
may withdraw tuple ("P", 6, 15) but not
tuple ("P", 6, 12). When a variable ap-
pears in a tuple without a type declarator,
its value is used as an actual. The annota-
tion formal may precede an already-
declared variable to indicate that the pro-
grammer intends a formal parameter.
Thus, if i and j have already been declared
as integer variables, the following two
statements are equivalent to the preceding
one:

i = 15; in("P", formal i, j)
This extended naming convention (it re-

sembles the select operation in relational

COMPUTER28

Figure 4. Structured naming: legal matches.

databases) is referred to as structured1
naming. Structured naming makes TS 11
content-addressable, in the sense that pro-
cesses may select among a collection of C
tuples that share the same first componentt
on the basis of the values of any other com- i
ponent fields. Any paramneter to out(or
eval()except the first may likewise be a for-
mal; a formal parameter in a tuple matches
any type-consonant actua in an in or read
statement's template. See Figure 4.

Programming in Linda
Figure 5. The manager process services requests one at a time.

Linda accommodates the needs for un-
coupling and dynamic scheduling we listed
above by relying on distributed data struc-
tures. As noted, a distributed data struc-
ture is one that may be manipulated by 0
many parallel processes simultaneously.
Distributed data structures are the natural I
complement to parallel program struc-
tures, but despite this natural relationship, | \
distributed data structures are impossible
in most parallel programming languages.
Most parallel languages are based instead
on what we call the manager process |
model of parallelism, which requires that
shared data objects be encapsulated within
manager processes. Operations on shared
data are carried out, on request, by the
manager process on the user's behalf. See
Figures 5 and 6.
The manager-process model has impor-

tant advantages, and manager-process
programs are easy to write in Linda. What Figure 6. Data are directly accessible to all parallel processes.

A.*.,. I.-,O 29AugusT IYOO

The processes in a
partitioned-network

program are coupled,
while those in a

replicated-worker
program are
uncoupled.

is significant, though, is the number of
cases in which distributed data structure
programs come closer to achieving the
qualities we want. They do so particularly
in the context of parallel programs struc-
tured not as logical networks but as col-
lections of identical workers. In logical-
network-style parallelism (the more
common variety), aprogram is partitioned
into n pieces, where n is determined by the
logic of the algorithm. Each of the n
logical pieces is implemented by a process,
and each process keeps its attention
demurely fixed on its own conventional,
local data structures. In the replicated
worker model, we don't partition our pro-
gram at all; we replicate it r times, where r
is determined by the number of processors
we have available. All rprocesses scramble
simultaneously over a distributed data
structure, seeking work where they can get
it. There is a strong underlying sense in
which the processes in a partitioned-
network program are coupled, while those
in a replicated-worker program are un-
coupled. In the partitioned network pro-
gram, each process must, in general, deal
with its neighbor processes; in the
replicated-worker program, workers ig-
nore each other completely. The replicated
worker model is interesting for a number
of more specific reasons as well.

1. It scales transparently. Once we have
developed and debugged a program with a
single worker process, our program will
run in the same way, only faster, with ten
parallel workers or a hundred. We need be
only minimally aware of parallelism in de-
veloping the program, and we can adjust
the degree of parallelism in any given run
to the available resources.

2. It eliminates logically-pointless con-
text switching. Each processor runs a
single process. We add processes only
when we add processors. The process-
managment burden per node is exactly the
same when the program runs on one node
as when it runs on a thousand. (This is not
true, of course, in the network model. A
network program always creates the same
number of processes. If many processors
are available, they spread out; if there are
only a few, they pile up.)

3. It balances load dynamically, by
default. Each worker process repeatedly
searches for a task to execute, executes it,
and loops. Tasks are therefore divided at
runtime among the available workers.

It's important to note that most of the
programs we've experimented with are not
pure replicated-worker examples; they in-
volve some partitioning as well as some
replication of duties. It's also true that
purely network-style programs may be
written in Linda and may rely on distrib-
uted data structures. Linda programs that
tend towards the replicated style seem to
be the most idiomatic and interesting,
though.
We illustrate with a simple example that

doesn't exercise the mechanism fully, but
makes some basic points. We've tested
several matrix multiplication programs
using S/Net-Linda. One version consists
of a setup-cleanup process and at least
one, but ordinarily many, worker pro-
cesses. Each worker is repeatedly assigned
some element of the product matrix to
compute; it computes this assigned ele-
ment and is assigned another, until all
elements of the product matrix have been
filled in. IfA and B are the matrices to be
multiplied, then specifically

1. The initialization process uses a suc-
cession of out statements to dump A's
rows and B's columns into TS. When these
statements have completed, TS holds

("A", 1, A's-first-row)
("A", 2, A's-second-row)

("B", 1, B's-first-column)
("B", 2, B's-second-column)

Indices are included as the second element
of each tuple so that worker processes,
using structured naming, can select the ith

row orjth column for reading. The initial-
izer then adds the tuple

("Next", 1)
to TS and terminates. 1 indicates the next
element to be computed.

2. Each worker process repeatedly
decides on an element to compute, then
computes it. To select a next element, the
worker removes the "Next" tuple from
TS, determines from its second field the
indices of the product element to be com-
puted next, and reinserts "Next" with an
incremented second field:

in("Next", formal NextElem);
if(NextElem < dim * dim)

out("Next", NextElem + 1);
i = (NextElem - 1)/dim + 1;
j = (NextElem - 1)%dim + 1;

The worker now proceeds to compute the
product element whose index is (ij).
Note that if (ij) is the last element of the
product matrix, the "Next" tuple is not
reinserted. When the other workers at-
tempt to remove it, they will block. A Lin-
da program terminates when all processes
have terminated or have blocked at in or
read statements.
To compute element (iJ) of the prod-

uct, the worker executes
read("A", i, formal row);
read("B", j, formal col);
out("result", i, j, DotProduct(row, col));

Thus each element of the product is packed
in a separate tuple and dumped into TS.
(Note that the first read statement picks
out a tuple whose first element is "A" and
second is the value of i; this tuple's third
element is assigned to the formal row.)

3. The cleanup process reels in the prod-
uct-element tuples, installs them in the
result matrix prod, and prints prod:

for (row = 1; row < = NumRows; row++)
for (col = 1; col<= NumCols; col ++)

in ("result", row, col, formal prod
[rowJ[coll);

print prod;
This simple program depends entirely

on distributed data structures. The input
matrices are distributed data structures; all
worker processes may read them simulta-
neously. In the manager-process model,
processes would send read-requests to the
appropriate manager and await its reply.
The "Next" tuple is a distributed data
structure; all worker processes share direct
access to it. In the manager process model,
again, worker processes would read and
update the "Next" counter indirectly via a

30 COMPUTER

manager. The product matrix is a distrib-
uted data structure, which all workers par-
ticipate in building simultaneously.
We discuss the performance of this pro-

gram, and of another version that assigns
coarser-grained tasks that compute an en-
tire row rather than a single inner product,
elsewhere.3 Both versions show good
speedup as we add processors up to the
limited number available to us on our
S/Net (currently eight). The version
discussed above requires only two parallel
workers and one control process to beat a
conventional uniprocessor C program on
32 x 32 matrices, and continues to show
linear speedup as we add workers. The
coarser-grained version, with its lower
commuriication overhead, shows speedup
close to ideal linear speedup of the
uniprocessor C version: our figures show
close to a progressive doubling, tripling,
and so on of the C program's speed as we
add Linda workers.
The matrix program displays the un-

coupling and dynamic-scheduling proper-
ties that we claimed above were important.
Uncoupling: no worker deals directly with
any other. Dynamic task scheduling: the
matrix program assigns tasks to workers
dynamically. But of course, in a problem
as simple and regular as matrix multiplica-
tion, dynamic scheduling isn't important.
We could just as well have assigned each of
n workers l/n of the product matrix to
compute. (It's interesting to note, how-
ever, that even with a problem as orderly
as matrix multiplication, dynamic sched-
uling might be the technique of choice if
we were running on a nonhomogeneous
network, on which processors vary in
speed and in runtime loading. We've been
studying just such anetwork-a collection
of VAXes ranging from MicroVAX I's to
8600's.)
Dynamic scheduling becomes impor-

tant when tasks require varying amounts
of time to complete. In the general case,
moreover, new tasks may be developed
dynamically as old ones are processed.
Linda techniques to deal with this general
problem are based on a distributed data
structure called a task bag. Workers
repeatedly draw their next assignment
from the task bag, carry out the specified
assignment, and drop any new tasks
generated in the process back into the task
bag. The program completes when the bag
is empty. The scheme is easily imple-

Figure 7. An S/Net kernel. (a) shows out: broadcast, while (b) shows in: check locally.
(The inverse of this scheme is also possible.)

mented in Linda. Elements of the bag will
be tuples of the form

("Task", task descriptor)
Each worker executes the following loop:

loop [

/I withdraw a task from the bag: */
in("Task", formal NextTask);
process "NextTask";
for (each NewTask generated in the

process)
/I drop the new task into the bag: */
out("Task", NewTask);

We've experimented with programs of
this sort to perform LU decomposition
with pivoting and to find paths through a
graph, among others. Note that, if it were
necessary to process tasks in a particular
order rather than in arbitrary order, we
would build a task queue instead of a task
bag. The technique would involve num-
bered tuples and structured naming.

The S/Nets Linda
kernel
Linda has often been regarded as posing

a particularly difficult implementation
problem. The difficulty lies in the fact
that, as noted above, Linda supplies a
form of logically-shared memory without
assuming any physically-shared memory
in the underlying hardware. The following

paragraphs summarize the way in which
we implemented Linda on the S/Net (the
S/Net implementation is discussed in
detail elsewhere3); there are many other
possible implementations as well.
Our implementation buys speed at the

expense of communication bandwidth
and local memory. The reasonableness of
this trade-off was our starting point.
(Possible variants are more conservative
with local memory.)

Executing out(t) causes tuple t to be
broadcast to every node in the network;
every node stores a complete copy of TS.
Executing in(s) triggers a local search for a
matching t. If one is found, the local
kernel attempts to delete t network-wide
using a procedure we discuss below. If the
attempt suceeds, t is returned to the pro-
cess that executed inO. (he attempt fails
only if a process on some other node has
simultaneously attempted to delete t, and
has succeeded.) If the local search trig-
gered by in(s) turns up no matching tuple,
all newly-arriving tuples are checked until
a match occurs, at which point the matched
tuple is deleted and returned as before.
readO works in the same way as inO, ex-
cept that no tuple-deletion need be at-
tempted. As soon as a matching tuple is
found, it is immediately returned to the
reading process. See Figure 7.
The delete protocol must satisfy two re-

quirements. First, all nodes must receive

August 1986 31

Figure 9. Execute in parallel.

Figure 8. Execute sequentially.

the "delete" message, and second, if
many processes attempt to delete simulta-
neously, only one must succeed. The man-
ner in which these requirements are met
will depend, of course, on the available
hardware.
When some node fails to receive and

buffer a broadcast message, a negative-
acknowledgement signal is available on
the S/Net bus. One possible delete pro-
tocol has two parts: The sending kernel
rebroadcasts repeatedly until the negative-
acknowlegement signal is not present. It
then awaits an "ok to delete t" message
from the node on which t originated. In
this protocol the kernel on the tuple's
origin node is responsible for allowing one
process, and only one, to delete it. (We
have implemented other protocols as well.
Processes may use the bus as a semaphore
to mediate multiple simultaneous deletes,
for example, and avoid the use of a special
"ok to delete" message.)

Evidence suggests that a minimal out4n
transaction, from kernel entry on the out
side to kernel exit on the in side, takes
about 1.4 ms.
We are working on other implementa-

tions as well. The VAX-network Linda
kernel (which was designed and is being

implemented by Jerry Leichter) uses a
technique that is in a sense the inverse of
the existing S/Net scheme. We're in the
process of trying this new technique on the
S/Net also. In the new protocol, out re-
quires only a local install; in(s) causes
template s to be broadcast to all nodes in
the network. Whenever a node receives a
template s, it checks s against all of its
locally-stored tuples. If there is a match, it
sends the matched tuple off to the tem-
plate's node. If not, it stores the template
for x ticks (checking all tuples newly-
generated within this period against it),
then throws it out. If the template's origin
node hasn't received a matching tuple
after x ticks, it rebroadcasts the template.
More than one node may respond with a
matching tuple to a template broadcast;
when a template broadcaster receives
more than one tuple, it simply installs the
extras alongside its locally-generated
tuples and sends them onward when
they're needed. (In a more elaborate ver-
sion, we can forestall the arrival of un-
needed tuples by having potential senders
monitor the bus, or by broadcasting an
"I've got one, enough already" message
at the appropriate point.) This scheme
doesn't require hardware support for
reliable broadcast and it doesn't require
tuples to be replicated on each node, so
per-node storage requirements are much
lower.
The Linda kernel for the Intel iPSC

hypercube, designed and implemented by
Rob Bjornson, relies on point-to-point
rather than broadcast communication.
His scheme implements tuple space as a
hash table distributed throughout the net-
work. Each tuple is hashed on out to a
unique network node and is sent there for
storage. Templates are hashed and stored
in the same way.

Finally, several of us (Bjornson, Carri-
ero, Leichter, and Gelernter) have begun,
in conjunction with Scientific Computing
Associates, to design and implement a
Linda kernel for the Encore Multimax.
Nodes on the Multimax have direct access
to physically shared memory. The Multi-
max Linda kernel should therefore be
faster and simpler than the kernels
described above, and in fact it is. The rela-
tionship between Linda and shared-
memory multiprocessors like the Multi-
max is roughly similar to what holds be-
tween block-structured languages and
stack architectures. The architecture
strongly supports the language; the lan-
guage refines the power of the architecture
and makes it accessible to programmers.
Of course, for all its promise, the Encore
doesn't end our interest in networks like
the S/Net. Shared memory seems ideal for
small or medium-sized collections of pro-
cessors. S/Net-like architectures, par-
ticularly the Linda machine we describe
below, may well scale upwards to enor-
mous sizes.
We have referred to Linda as a pro-

gramming language, but it really isn't. It is
a new machine model, in the same sense in
which dataflow or graph-reduction may
be regarded as machine models as much as
programming methodologies. The kernels
described above are software realizations
of a Linda machine, but Ahuja and
Venkatesh Krishnaswamy of Yale are
designing a hardware Linda machine as
well, based on the S/Net. The heart of the
Linda machine is a box to be interposed
between each processor and the S/Net
bus. The box implements the Linda com-
munication kernel in hardware, turning an
ordinary bus into a tuple space. The cur-
rent box is designed for the S/Net ex-
clusively, but we are interested in general

COMPUTER32

versions that will connect arbitrary nodes
and communication media as well. In-
stallation of either the software Linda
kernel or the hardware Linda boxes has
the effect of uniting many physically-
disjoint nodes into one logically-shared
space.

Friends
Linda may be regarded as machine lan-

guage for the Linda machine. We can in
fact compile higher-level parallel lan-
guages into Linda. Higher-level languages
may, for example, support shared vari-
ables that are directly accessible to parallel
processes. If v is a shared variable, the
compiler might translate

v: = expr

to
in("v", formal v_value);
out("v", expr)

and

to
read ("v", formal v_value);
f(...v_value,...)

We can support data objects like streams
on top of Linda in the same general way.
The higher-level parallel languages that

interest us particularly are the so-called
symmetric languages. Symmetric lan-
guages are based on the proposition that,
just as we can give names to arbitrary
statement sequences and nest their execu-
tion in arbitrary ways, we should be able to
name arbitrary horizontal combinations,
or environments, and nest them in ar-
bitrary ways.

Consider an arbitrary "execute sequen-
tially" statement:

sl ; s2; ...; sn

We can represent the execution of this se-
quence at runtime as as in Figure 8. Each
box represents the execution of one state-
ment in the sequence. The boxes are
stacked on top of each other; the evalua-
tions of successive elements occupy dis-
joint intervals of time, but they may suc-
cessively occupy the same space. (Thus if
each si is a block that creates local
variables, we can always reuse the previous
block's storage space for the next block's
variables, once evaluation of the previous
block is complete.) Now suppose we trans-
pose this structure around the time-space

axis, as in Figure 9. Again, each box repre-
sents the execution of a separate state-
ment. In the resulting structure, which we
refer to as an alpha, the evaluations of suc-
cessive elements occupy disjoint regions of
space and share one time; that is, they exe-
cute concurrently. Ifwe added alphas to a
programming language and wrote them

sl&s2& ...&sn,
the resulting statement calls for the execu-
tion of all si in parallel.

Suppose we add one more element to
the alpha's definition. In most program-
ming languages, a local variable's scope is
specified explicitly and its lifetime is in-
ferred from its scope by the following sim-
ple rule: A variable must live for at least as
long as the statements that refer to it, so
that theymaybe assured of finding it when
they look. In symmetric languages we re-
verse this rule and infer scope from life-
time: If a variable is guaranteed to live for
at least as long as a group of statements,
then those statements may refer to it
because they are assured of finding it when
they look. Now consider the alpha: Execu-
tion of an alpha as a whole can't be com-
plete until each of its components has exe-
cuted to completion. (The same rule holds
for the standard "execute sequentially"
form.) Because alpha execution isn't com-
plete until every component has been fully
evaluated, no box in the alpha representa-
tion above will disappear until they all do.
It follows that, if we store a named
variable instead of an executable state-
ment inside some box, then that variable
should be accessible to statements in adja-
cent boxes, because the variable and the
statement live for the same interval of
time. The statement is therefore assured of
finding the variable when it looks for it.
Hence, symmetric languages will use
alphas to create blocks as well as to create
parallel-execution streams. For example,
the Pascal block

var i: real; j: integer; begin ... end

becomes
i: real& j: integer& begin ... end

in Symmetric Pascal.
The alpha can in fact be used as a flexi-

ble computational cupboard. We can
store any assortment of named values and
active processes in its slots. Symmetric
languages use alphas to serve the purpose
of a Pascal record, of a Simula class or
Scheme closure, ofa package or a module,

We'd like to be able
to encompass whole
networks, even
physically-dispersed
ones, within Linda
systems.

and in fact of an entire program or en-
vironment. All symmetric languages natu-
rally encompass interpreted as well as
compiled execution. A symmetric-language
interpreter simply builds an alpha in-
crementally, repeatedly tacking on new
elements at the end. This incrementally-
growing alpha is the interpreter's environ-
ment. Because the elements of an alpha
may be evaluated in parallel, the sym-
metric interpreter is a parallel interpreter:
Each new expression the user enters is
evaluated in a separate process, concur-
rently with all previous expressions. The
values returned by all these concurrent
evaluations coalesce into a single shared
naming environment.

This is a mere sketch. Symmetric lan-
guages are discussed in detail elsewhere. 4
We are particularly interested in Sym-
metric C and Symmetric Lisp; either may
be implemented on top of the runtime en-
vironment provided by the Linda kernel.

The future
We have many future plans.
The semantics of a tuple space allow it,

like a file, to exist independently of any
particular process or program. A tuple
space might in the abstract outlive many
invocations of the same program. What
we'd like, then, is for tuple spaces to be
regarded as a special sort of file (or
equivalently, for files to be special tuple
spaces). We'd like to be able to keep tuple
spaces along with files in hierarchical
directories. With many tuple spaces to
choose from, Linda processes must be
given a way to indicate which one is the
current one. Once some such mechanism

August 1986 33

has been provided, the availability of
multiple tuple spaces greatly expands the
system's capabilities. We can associate dif-
ferent protection attributes with different
tuple spaces, just as we do with different
files. We can use tuple spaces to support
communication between user and system
processes by making tuple spaces available
for out only, read only, and so on. We can
also allow in operations that remove whole
tuple spaces at one blow and outs that add
whole tuple spaces. The design and im-
plementation ofsuch an extension is a goal
for the immediate future.

It's clear that Linda can be an inter-
preted command language as well as a
compiled one. It would be useful to allow
users to add, read, and remove tuples from
active tuple spaces interactively. We've
taken some preliminary steps towards im-
plementing such a system. We'd like, too,
to be able to encompass whole networks,
even physically-dispersed ones, within
Linda systems. We can then use Linda to
write distributed network utilities like
mailers and file systems. Our work on the
VAX-network implementation is leading
toward experiments of this sort.

F inally, we imagine, as an object of
prime interest for the future, an
enormous Linda machine highly op-

timized to support Linda primitives. We
don't yet know how to build such a ma-
chine, but it's hard not to notice that very
large networks with small diameters might
be constructed out of multidimensional
grids of S/Net-like buses. Having built
such a machine, we imagine tuple space
itself as the machine's main memory.
(Outside of tuple space, only registers and
local caches exist.) As the Linda primitives
become faster and more efficient, such an
architecture looks more and more like a
sort of dataflow machine, but with a
crucial difference. As in a dataflow
machine, we can create task templates
(stored in tuples), update them with new
values as they become available, and mark
them "enabled" when all values are filled
in. General-purpose evaluator processes,
much like the replicated workers discussed
above, use in to pick out task tuples
marked "enabled." But unlike the token
space of a dataflow machine, a Linda
machine's tuple space can store data struc-
tures as well as task descriptors. Processes
are free to build whatever (distributed)

data structures they want, and manipulate
and side-effect them as they choose. We
might even use such a Linda machine to
store large databases operated upon in
parallel.
Such work is for the future. We still lack

a polished Linda implementation on any
machine. We hope to have one soon. And
clearly we can learn a great deal by contin-
uing to refine and to experiment with Lin-
da kernels for present-generation architec-
ture. This is what we plan to do.OI

Acknowledgments
Rob Bjornson, Venkatesh Krishna-

swamy, and Jerry Leichter are our collab-
orators in the Yale Linda group. Thanks
also to Erik DeBenedictis, Robert Gaglia-
nello, Howard Katseff, and Thomas Lon-
don of AT&T Bell Labs.

References
1. J. T. Deutsch and A. R. Newton,

"MSplice: A Multiprocessor-based
Circuit Simulator," Proc. 1984 Int'l
Conf. Parallel Processing, Aug. 1984, pp.
207-214.

2. G. F. Pfister et al., "The IBM Research
Parallel Processor (RP3): Introduction
and Architecture," Proc. 1985Intl7Conf.
Parallel Processing, Aug. 1985.

Sudhir Ahuja obtained his MS and PhD in elec-
trical engineering from Rice University in 1974
and 1977, respectively. He has been withAT&T
Bell Laboratories, Holmdel, NJ since 1977. He
is currently the head of the System Architec-
tures Research Department. His earlier work
involved associative memories, pipelining, and
parallel processing. He has been involved in the
design and implementation of an associative
processor, high-speed buses, and multiproces-
sor systems. His current interests are in the field
of multiprocessor architectures, concurrent
programming, local networking, and the use of
VLSI to implement specialized processor archi-
tectures.

Readers may write to Gelernter at the Dept.
of Computer Science, PO Box 2158, Yale Sta-
tion, New Haven, CT 06520-2158.

3. N. Carriero and D. Gelernter, "The
S/Net's Linda Kernel," Proc. Symp.
Operating System Principles, Dec. 1985,
and ACM TOCS, May 1986.

4. D. Gelermter, "Symmetric Programming
Languages," Yale Univ. Dept. Comp.
Sci. tech. report yaleu/dcs/ rr#253, Dec.
1984.

Nicholas Carriero is a graduate student in the
Yale University Department of Computer
Science. He received a BS from Brown in 1980
and an MS in computer science from SUNY at
Stony Brook in 1983. Distributed programming
languages and operating systems are his re-
search interests.

David Gelermter's biography and photo appear
following the Guest Editor's Introduction, on
page 16.

34 COMPUTER

