
How to Write Parallel Programs: A Guide to the Perplexed

NICHOLAS CARRIER0 AND DAVID GELERNTER

Department of Computer Science, Yale University, New Haven, Connecticut 06520

We present a framework for parallel programming, based on three conceptual classes for
understanding parallelism and three programming paradigms for implementing parallel
programs. The conceptual classes are result parallelism, which centers on parallel
computation of all elements in a data structure; agenda parallelism, which specifies an
agenda of tasks for parallel execution; and specialist parallelism, in which specialist
agents solve problems cooperatively. The programming paradigms center on live data
structures that transform themselves into result data structures; distributed data
structures that are accessible to many processes simultaneously; and message passing, in
which all data objects are encapsulated within explicitly communicating processes. There
is a rough correspondence between the conceptual classes and the programming methods,
as we discuss. We begin by outlining the basic conceptual classes and programming
paradigms, and by sketching an example solution under each of the three paradigms. The
final section develops a simple example in greater detail, presenting and explaining code
and discussing its performance on two commercial parallel computers, an l&node shared-
memory multiprocessor, and a 64-node distributed-memory hypercube. The middle
section bridges the gap between the abstract and the practical by giving an overview of
how the basic paradigms are implemented.

We focus on the paradigms, not on machine architecture or programming languages:
The programming methods we discuss are useful on many kinds of parallel machine, and
each can be expressed in several different parallel programming languages. Our
programming discussion and the examples use the parallel language C-Linda for several
reasons: The main paradigms are all simple to express in Linda; efficient Linda
implementations exist on a wide variety of parallel machines; and a wide variety of
parallel programs have been written in Linda.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent
Programming; D.3.2 [Programming Languages]: Language Classifications-parallel
languages; D.3.3 [Programming Languages]: Concurrent Programming Structures;
E.1.m [Data Structures]: Miscellaneous-distributed data structures; live data structures

General Terms: Algorithms, Program Design, Languages

Additional Key Words and Phrases: Linda, parallel programming methodology,
parallelism

INTRODUCTION agenda parallelism, or specialist parallel-
ism, terms we define. Corresponding to

How do we build programs using parallel these basic approaches are three parallel
algorithms? On a spectrum of basic ap- programming methods-practical tech-
proaches, three primary points deserve spe- niques for translating concepts into work-
cial mention: We can use result parallelism, ing programs; we can use message passing,

This working was supported by National Science Foundation SBIR Grant ISI- and by National Science
Foundation Grants CCR-8601920, CCR-8657615, and ONR N00014-86-K-0310.
Permission to copy without fee all or part of this material is granted provided- that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM 0360-0300/89/0900-0323 $00.75

ACM Computing Surveys, Vol. 21, No. 3, September 1989

324 . N. Carrier0 and D. Gelernter

CONTENTS

INTRODUCTION
1. CONCEPTS AND METHODS

1.1 ,Conceptual Classes
1.2 The Programming Methods
1.3 Where to Use Each
1.4 An Example
1.5 A Methodology: How Do the Three

Techniques Relate?
1.6 Where Are the Basic Techniques Supported?

2. PROGRAMMING TECHNIQUES FOR
PARALLELISM
2.1 Linda
2.2 The Basic Distributed Data Structures
2.3 Message Passing and Live Data Structures

3. PUTTING THE DETAILS TOGETHER
3.1 Result Parallelism and Live Data Structures
3.2 Using Abstraction to Get an Efficient Version
3.3 Comments en the Agenda Version
3.4 Specialist Parallelisrr.
3.5 Simplicity

4. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES

distributed data structures, or live data
structures.l Each programming method in-
volves a different view of the role of pro-
cesses and the distribution of data in a
parallel program. The basic conceptual ap-
proaches and programming methods we
have mentioned are not provably the only
ones possible. But empirically they cover
all examples we have encountered in the
research literature and in our own program-
ming experience.

Our goal here is to explain the conceptual
classes, the programming methods, and the
mapping between them. Section 1 explains
the basic classes and methods, and sketches
an example program under each of the
three methods. Section 2 bridges the gap
between the abstract and the practical by
giving an overview of how these methods
are implemented. Section 3 develops a sim-

’ Although these methods are well-known, the latter
two terms are not. Discussions of parallel program-
ming methodology to date have been largely ad hoc,
and as a result, the latter two categories have no
generally accepted names. In fact, they are rarely
recognized as categories at all.

ple example in greater detail, presenting
and explaining code.

In presenting and explaining program-
ming methods, we rely on the high-level
parallel language C-Linda. Linda2 is a
language-independent set of operations
that, when integrated into some base lan-
guage, yields a high-level parallel dialect.
C-Linda uses C; Fortran-Linda exists as
well. Other groups are working on other
languages3 as Linda hosts. Our main topic
is not Linda, any more than Pascal is the
main topic in “Introductory Programming
with Pascal” books. But we do need to
present the basics of Linda programming.
Linda is a good choice in this context for
three reasons. (1) Linda is flexible: It sup-
ports all three programming methods in a
straightforward fashion. This is important
precisely because programming paradigms,
not programming languages, are the topic
here. The only way to factor language issues
out of the discussion (at least partially) is
to choose one language that will allow us to
investigate all approaches. (2) Efficient
Linda implementations are available on
commercial parallel machines. We are dis-
cussing real (not theoretical) techniques,
and for readers who want to investigate
them, efficient Linda systems exist.4 (3)
Linda has been used in a wide variety of
programming experiments-which give us a

* Linda is a trademark of Scientific Computing Asso-
ciates, New Haven.
’ Among them, Scheme, PostScript (see Leler 119891),
and C++; Borrman et al. [1988describe a Modula-2
Linda, and Matsuoka and Kawai 119881 describe an
object-oriented Linda variant. - -
’ Linda has been implemented on shared-memory par-
allel computers like the Encore Multimax, Sequent
Balance and Symmetry, and Alliant FX/8; on distrib-
uted memory computers like the Intel iPSC-2 hyper-
cube; and on a VAX/VMS local-area network. Several
independent commercial implementations now in
progress-for example, at Cogent Research, Human
Devices, and Topologix-will expand the range of
supported architectures. Other groups have ports un-
derway or planned to the Trollius operating system,
to the BBN Butterfly running Mach, and to the
NCUBE; Xu [1988] describes the design of a reliable
Linda system based on Argus. A simulator that runs
on Sun workstations also exists. The range of ma-
chines on which Linda is supported will be expanding
significantly in coming months. Linda systems are
distributed commercially by Scientitic Computing As-
sociates, New Haven.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

How to Write Parallel Programs l 325

is the obvious approach. But there are sev-
eral different ways in which parallelism
might enter.

First, we might envision parallelism by
starting with the finished product, the re-
sult. The result can be divided into many
separate components: front, rear and side
walls, interior walls, foundation, roof, and
so on. After breaking the result into com-
ponents, we might proceed to build all com-
ponents simultaneously, assembling them
as they are completed; we assign one worker
to the foundation, one to the front exterior
wall, one to each side wall and so on. All
workers start simultaneously. Separate
workers set to work laying the foundation,
framing each exterior wall and building a
roof assembly. They all proceed in parallel,
up to the point where work on one compo-
nent can’t proceed until another is finished.
In sum, each worker is assigned to produce
one piece of the result, and they all work in
parallel up to the natural restrictions im-
posed by the problem. This is the result-
parallel approach.

At the other end of the spectrum, we
might envision parallelism by starting with
the crew of workers who will do the build-
ing. We note that house building requires a
collection of separate skills: We need sur-
veyors, excavators, foundation builders,
carpenters, roofers and so on. We assemble
a construction crew in which each skill is
represented by a separate specialist worker.
They all start simultaneously, but initially
most workers will have to wait around.
Once the project is well underway, however,
many skills (hence many workers) will be
called into play simultaneously: The car-
penter (building forms) and the foundation
builders work together, and concurrently,
the roofer can be shingling while the
plumber is installing fixtures and the elec-
trician is wiring, and so on. Although a
single carpenter does all the woodwork,
many other tasks will overlap and proceed
simultaneously with the carpenter’s. This
approach is particularly suited to pipelined
jobs-jobs that require the production or
transformation of a series of identical ob-
jects. If we are building a group of houses,
carpenters can work on one house while
foundation builders work on a second and
surveyors on a third. But this strategy will

ACM Computing Surveys, Vol. 21, No. 3, September 1989

basis in experience for discussing the
strengths and weaknesses of various ap-
proaches. There are Linda applications for
numerical problems like matrix multipli-
cation, LU decomposition, sparse factori-
zation [Ashcraft et al. 19891 and linear
programming, and for parallel string
comparison, database search, circuit simu-
lation, ray tracing [Musgrave and Mandel-
brot 19891, expert systems [Gelernter
19891, parameter sensitivity analysis,
charged particle transport [Whiteside
and Leichter 19881, traveling salesman, and
others. We will refer to several of these
programs in the following discussion.

1. CONCEPTS AND METHODS

How do we write parallel programs? For
each conceptual class, there is a natural
programming method; each method relates
to the others in well-defined ways (i.e.,
programs using method x can be trans-
formed into programs using method y by
following well-defined steps). We will
therefore develop the following approach to
parallel programming:

To write a parallel program, (1) choose the
concept class that is most natural for the
problem; (2) write a program using the
method that is most natural for that concep-
tual class; and (3) if the resulting program is
not acceptably efficient, transform it me-
thodically into a more efficient version by
switching from a more-natural method to a
more-efficient one.

First we explain the concepts-result,
agenda, and specialist parallelism. Then we
explain the methods: live data structures,
distributed structures, and message pass-
ing. Finally, we discuss the relationship
between concepts and methods, and give
an example.

1.1 Conceptual Classes

We can envision parallelism in terms of a
program’s result, a program’s agenda of ac-
tivities, or an ensemble of specialists that
collectively constitute the program. We be-
gin with an analogy.

Suppose you want to build a house. Par-
allelism-using many people on the job-

326 l N. Carrier0 and D. Gelernter

often yield parallelism even when the job is
defined in terms of a single object, as it
does in the case of the construction of a
single house. In sum, each worker is as-
signed to perform one specified kind of work,
and they all work in parallel up to the
natural restrictions imposed by the prob-
lem. This is the specialist-parallel approach.

Finally, we might envision parallelism in
terms of an agenda of activities that must
be completed in order to build a house. We
write out a sequential agenda and carry it
out in order, but at each stage we assign
many workers to the current activity. We
need a foundation, then we need a frame,
then we need a roof, then we need wallboard
and perhaps plastering, and so on. We as-
semble a work team of generalists, each
member capable of performing any con-
struction step. First, everyone pitches in
and builds the foundation; then, the same
group sets to work on the framing; then
they build the roof; then some of them work
on plumbing while others (randomly cho-
sen) do the wiring; and so on. In sum, each
worker is assigned to help out with the
current item on the agenda, and they all
work in parallel up to the natural restric-
tions imposed by the problem. This is the
agenda-parallel approach.

The boundaries between the three classes
can sometimes be fuzzy, and we will often
mix elements of several approaches in get-
ting a particular job done. A specialist
approach might make secondary use of
agenda parallelism, for example, by assign-
ing a team of workers to some specialty-
the team of carpenters, for example, might
execute the “carpentry agenda” in agenda-
parallel style. It is nonetheless a subtle but
essential point that these three approaches
represent three clearly separate ways of
thinking about the problem:

Result parallelism focuses on the shape of
the finished product; specialist parallelism
focuses on the makeup of the work crew; and
agenda parallelism focuses on the list of tasks
to be performed.

These three conceptual classes apply to
software as well. In particular,

(1) we can plan a parallel application
around the data structure yielded as

ACM Computing Surveys, Vol. il, No. 3, September 1989

(2)

(3)

the ultimate result, and we get paral-
lelism by computing all elements of the
result simultaneously;
we can plan an application around a
particular agenda of activities and then
assign many workers to each step; or
we can plan an application around an
ensemble of specialists connected into
a logical network of some kind; paral-
lelism results from all nodes of the log-
ical network (all specialists) being
active simultaneously.

How do we know what kind of parallel-
ism, what conceptual class, to use? Con-
sider the house-building analogy again. In
effect, all three classes are (or have been)
used in building houses. Factory-built hous-
ing is assembled at the site using prebuilt
modules-walls, a roof assembly, stair-
cases, and so on; all these components were
assembled separately and (in theory) si-
multaneously back at the factory. This is a
form of result parallelism in action. “Barn
raisings” evidently consisted of a group of
workers turning its attention to each of a
list of tasks in turn, a form of agenda par-
allelism. But some form of specialist par-
allelism, usually with secondary agenda
parallelism, seems like the most natural
choice for house building: Each worker (or
team) has a specialty, and parallelism arises
in the first instance when many separate
specialities operate simultaneously, sec-
ondarily when the many (in effect) identi-
cal workers on one team cooperate on the
agenda.

In software as well, certain approaches
tend to be more natural for certain prob-
lems. The choice depends on the problem
to be solved. In some cases, one choice is
immediate. In others, two or all three ap-
proaches might be equally natural. This
multiplicity of choices might be regarded as
confusing or off-putting; we would rather
see it as symptomatic of the fact that par-
allelism is in many cases so abundant that
the programmer can take his choice about
how to harvest it.

In many cases, the easiest way to design
a parallel program is to think of the result-
ing data structure-result parallelism. The
programmer asks himself (1) is my program

How to Write Parallel Programs l 327

shape. Consider a program in which (con-
ceptually) a single object is transformed
repeatedly: an LU decomposition or linear
programming problem, for example, in
which a given matrix is repeatedly trans-
formed in place. Consider a program that
is executed not for value, but for effect: a
real-time monitor-and-control program or
an operating system, for example.

Agenda parallelism involves a transfor-
mation or series of transformations to be
applied to all elements of some set in par-
allel. The most flexible embodiment of this
type of parallelism is the master-worker
paradigm. In a master-worker program, a
master process initializes the computation
and creates a collection of identical worker
processes. Each worker process is capable
of performing any step in the computation.
Workers repeatedly seek a task to perform,
perform the selected task, and repeat; when
no tasks remain, the program (or this step)
is finished. The program executes in the
same way no matter how many workers
there are, so long as there is at least one.
The same program might be executed with
1, 10, and 1000 workers in three consecutive
runs. If tasks are distributed on the fly, this
structure is naturally load-balancing:
While one worker is tied up with a time-
consuming task, another might execute a
dozen shorter task assignments.

For example, suppose we have a database
of employee records and need to identify
the employee with, say, the lowest ratio of
salary to dependents. Given a record Q, the
function r(Q) computes this ratio. The
agenda is simple: “Apply function r to all
records in the database; return the identity
of the record for which r is minimum.” We
can structure this application as a master-
worker program in a natural way: The mas-
ter fills a bag with data objects, each rep-
resenting one employee record. Each
worker repeatedly withdraws a record from
the bag, computes r, and sends the result
back to the master. The master keeps track
of the minimum-so-far and, when all tasks
are complete, reports the answer.

Specialist parallelism involves programs
that are conceived in terms of a logical
network. They arise when an algorithm or
a system to be modeled is best understood
as a network in which each node executes

ACM Computing Surveys, Vol. 21, No. 3, September 1989

intended to produce some multiple-element
data structure as its result (or can it. be
conceived in these terms)? If so, (2) can I
specify exactly how each element of the
resulting structure depends on the rest and
on the input? If so, it’s easy (given knowl-
edge of the appropriate programming meth-
ods) to write a result-parallel program.
Broadly speaking, such a program reads as
follows: “Build a data structure in such-
and-such a shape; attempt to determine the
value of all elements of this structure si-
multaneously, where the value of each ele-
ment is determined by such-and-such a
computation. Terminate when all values
are known.” It may be that the elements of
the result structure are completely inde-
pendent-no element depends on any
other. If so, all computations start simul-
taneously and proceed in parallel. It may
also be that some elements can’t be com-
puted until certain other values are known.
In this case, all element computations start
simultaneously, but some immediately get
stuck. They remain stuck until the values
they rely on have been computed, and then
proceed.

Consider a simple example: We have two
n-element vectors, A and B, and need to
compute their sum S. A result-parallel pro-
gram reads as follows: “Construct an
n-element vector S; to determine the ith
element of S, add the ith element of A to
the ith element of B.” The elements of S
are completely independent. No addition
depends on any other addition. All addi-
tions accordingly start simultaneously and
go forward in parallel.

More interesting cases involve computa-
tions in which there are dependencies
among elements of the result data struc-
ture. We discuss an example in the next
section.

Result parallelism is a good starting
point for any problem whose goal is to
produce a series of values with predictable
organization and interdependencies, but
not every problem meets this criterion.
Consider a program that produces output
whose shape and format depend on the
input: a program to format text or translate
code in parallel, for example, whose output
may be a string of bytes and (perhaps) a
set of tables, of unpredictable size and

328 l N. Carrier0 and D. Gelernter

a relatively autonomous computation and
internode communication follows predict-
able paths. The network may reflect a phys-
ical model or the logical structure of an
algorithm (e.g., as in a pipelined or systolic
computation). Network-style solutions are
particularly transparent and natural when
there is a physical system to be modeled.
Consider a circuit simulator, for example,
modeled by a parallel program in which
each circuit element is realized by a sepa-
rate process. There are also problems that
partition naturally into separate realms of
responsibility, with clearly defined inter-
communication channels; further on we
discuss a “cooperating experts” type of heu-
ristic monitor that uses this kind of orga-
nization. In the last section, we discuss a
pipeline type of algorithm, an algorithm
understood as a sequence of steps applied
to a stream of input values, with each stage
of the pipe transforming a datum and hand-
ing it forward.

For example, suppose a nationwide
trucking company needs to produce a large
number of estimates for travel time be-
tween two points, given current estimates
for road conditions, weather, and traffic.
We might design a specialist-parallel pro-
gram as follows: We embody a map of the
continental United States in a logical net-
work; each state is represented by its own
node in the network. The Wyoming node
is responsible for staying up-to-date on
travel conditions in and expected transit
time through Wyoming, and so forth. To
estimate travel time from New Hampshire
to Arkansas, we plan out a route and in-
clude a representation of this route within
a data object representing a truck. We hand
the “truck” to New Hampshire, which es-
timates its travel time through New Hamp-
shire and then hands the truck to the next
state along its route. Eventually the “truck”
reaches Arkansas, which prints out the fi-
nal estimate for its transit time. Note that
large numbers of trucks may be moving
through the logical network at any one
time.

We conclude this survey of conceptual
classes by mentioning two special classes
that we will not deal with further, data
parallelism and speculative parallelism

(sometimes called or-parallelism). Data
parallelism is a restricted kind of agenda
parallelism: It involves a series of transfor-
mations each applied to all elements of a
data structure simultaneously. If we start
with an agenda of activities in which each
item requires that a transformation be ap-
plied to a data structure, the agenda-
parallel program we would derive would in
effect be an example of data parallelism.
Empirically, data parallelism is usually as-
sociated with synchronous machines (e.g.,
MPP [Goodyear Aerospace Co. 19791 and
the Connection Machine [Hillis and Steele
19861) and is accordingly tied to an imple-
mentation in which transformations are
applied to all elements of some data struc-
ture not merely concurrently but synchron-
ously: At each instant, each active worker
is applying the same step of the same trans-
formation to its own assigned piece of the
structure. In this paper our focus is re-
stricted to techniques that are used
on general-purpose asynchronous parallel
machines.5 In “speculative parallelism,”
often associated with logic programming,
but also significant in, for example, parallel
algorithms for heuristic search (e.g., par-
allel alpha-beta search on game trees
[Marsland and Campbell 1982]), a collec-
tion of parallel activities is undertaken with
the understanding that some may ulti-
mately prove to be unnecessary to the final
result. Whenever a program’s structure in-
cludes clauses like “try X, and if x fails, try
y” (and so on through a list of other alter-
natives), we can get parallelism by working
on x, y, and any other alternatives simul-
taneously. If and when x fails, y is already
underway. We understand this under our
schematization as another special form of
agenda parallelism: Many workers are
thrown simultaneously into the completion
of a list of tasks, with the understanding
that, ultimately, only one of the results
produced will be incorporated in the fin-
ished product.

5 This focus can be taken as arbitrary, but there is a
reason for it. At present, synchronous or SIMD ma-
chines are rare and expensive; asynchronous machines
can be built cheaply and are increasingly widespread.
The imminent arrival of parallel workstations will add
to the flood.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

How to Write Parallel Programs l 329

Figure 1. Message passing: The process structure-the number
of processes and their relationships-determines the program
structure. A collection of concurrent processes communicate by
exchanging messages; every data object is locked inside some
process. (Processes are round, data objects square, and messages
oval.)

Rczd

Figure 2. Live data structures: The result data structure-the number

q Ii--ma of its elements and their relationship-determines the program structure.
Every concurrent process is locked inside a data object; it is responsible,

- in other words, for computing that element and only that element.
Communication is no longer a matter of explicit “send message” and
“receive message” operations; when a process needs to consult the value

DIDI

produced by some other process, it simply reads the data object within
which the process is trapped.

1.2 The Programming Methods

In message passing, we create many con-
current processes and enclose every data
structure within some process; processes
communicate by exchanging messages. In
message-passing methods, no data objects
are shared among processes. Each process
may access its own local set of private data
objects only. In order to communicate,
processes must send data objects from one
local space to another; to accomplish this,
the programmer must explicitly include
send-data and receive-data operations in
his code (Figure 1).

At the other extreme, we dispense with
processes as conceptually independent en-
tities and build a program in the shape of
the data structure that will ultimately be
yielded as the result. Each element of this
data structure is implicitly a separate pro-
cess, which will turn into a data object upon
termination. To communicate, these im-
plicit processes don’t exchange messages;

they simply “refer” to each other as ele-
ments of some data structure. Thus, if pro-
cess P has data for Q, it doesn’t send
a message to Q; it terminates, yielding
a value, and Q reads this value directly.
These are “live-data-structure” programs
(Figure 2).

The message-passing and live-data-
structure approaches are similar in the
sense that, in each, all data objects are
distributed among the concurrent proc-
esses; there are no global, shared structures.
In message passing, though, processes are
created by the programmer explicitly; they
communicate explicitly and may send
values repeatedly to other processes. In a
live-data-structure program, processes are
created implicitly in the course of building
a data structure; they communicate implic-
itly by referring to the elements of a data
structure, and each process produces only
a single datum for use by the rest of the
program. Details will become clear as we
discuss examples.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

330 l N. Carrier0 and D. Gelernter

Figure 3. Distributed data structures: Concurrent processes
and data objects figure as autonomous parts of the program
structure. Processes communicate by reading and writing shared
data objects.

Between the extremes of allowing all data
to be absorbed into the process structure
(message passing) or all processes to melt
into data structures (live data structures),
there is an intermediate strategy that main-
tains the distinction between a group of
data objects and a group of processes.
Because shared data objects exist, pro-
cesses may communicate and coordinate
by leaving data in shared objects. These
are “distributed-data-structure” programs
(Figure 3).

1.3 Where to Use Each

It’s clear that result parallelism is natu-
rally expressed in a live-data-structure
program. For example, returning to the
vector-sum program, the core of such an
application is a live data structure. The live
structure is an n-element vector called S;
trapped inside each element of S is a pro-
cess that computes A[i] + B[i] for the ap-
propriate i. When a process is complete, it
vanishes, leaving behind only the value it
was charged to compute.

Specialist parallelism is a good match to
message passing: We can build such a pro-
gram under message passing by creating
one process for each network node and
using messages to implement communica-
tion over edges. For example, returning to
the travel-time program, we implement
each node of the logical network by a pro-
cess; trucks are represented by messages.
To introduce a truck into the network at
New Hampshire, we send New Hampshire
a “new truck” message; the message in-

ACM Computing Surveys, Vol. 21, No. 3. September 1989

eludes a representation of the truck’s route.
New Hampshire computes an estimated
transit time and sends another message,
including both the route and the time-en-
route-so-far to the next process along the
route. Note that, with lots of trucks in the
network, many messages may converge on
a process simultaneously. Clearly, then, we
need some method for queuing or buffering
messages until a process can get around to
dealing with them. Most message-passing
systems have some kind of buffering mech-
anism built in.

Even when such a network model exists,
though, message passing will sometimes be
inconvenient in the absence of backup sup-
port from distributed data structures. If
every node in the network needs to refer to
a collection of global status variables, those
globals can only be stored (absent distrib-
uted data structures) as some node’s local
variables, forcing all access to be channeled
through a custodian process. Such an ar-
rangement can be conceptually inept and
can lead to bottlenecks.

Agenda parallelism maps naturally onto
distributed-data-structuremethods.Agenda
parallelism requires that many workers set
to work on what is, in effect, a single job.
In general, any worker will be willing to
pick up any subtask. Results developed by
one worker will often be needed by others,
but one worker usually won’t know (and
won’t care) what the others are doing. Un-
der the circumstances, it’s far more conven-
ient to leave results in a distributed data
structure, where any worker who wants
them can take them, than to worry about

How to Write Parallel Programs l 331

and the last column, the final position, of
each body. We have now carried out step 1
in the design of a live data structure. The
second step is to define each entry in terms
of other entries. We can write a function
position(i, j) that computes the position of
body i on iteration j ; clearly position(i, j)
will depend on the positions of each body
at the previous iteration-will depend, that
is, on the entries in column j - 1 of the
matrix. Given a suitable programming lan-
guage, we’re finished: We build a program
in which M[i, j] is defined to be the value
yielded by position (i, j). Each invocation of
position constitutes an implicit process, and
all such invocations are activated and begin
execution simultaneously. Of course, com-
putation of the second column can’t pro-
ceed until values are available for the first
column: We must assume t.hat, if some
invocation of position refers to M[x, y] and
M[x, y] is still unknown, we wait for a
value and then proceed. Thus, the zeroth
column’s values are given at initialization
time, whereupon all values in the first col-
umn can be computed in parallel, then the
second column, and so forth (Figure 4).

Note that, if the forces are symmetric,
this program does more work than neces-
sary, because the force between A and B is
the same as the force between B and A.
This is a minor problem that we could
correct, but our goal here is to outline the
simplest possible approach.

We can also approach this problem in
terms of agenda parallelism. The task
agenda states “repeatedly apply the trans-
formation compute next position to all bod-
ies in the set.” To write the program, we
might create a master process and have it
generate n initial task descriptors, one for
each body. On the first iteration, each
worker in a group of identical worker pro-
cesses repeatedly grabs a task descriptor
and computes the next position of the cor-
responding body, until the pile of task de-
scriptors is used up (and all bodies have
advanced to their new positions); likewise
for each subsequent iteration. A single
worker will require time proportional to n2
to complete each iteration; two workers
together will finish each iteration in time
proportional to n2/2, and so on. We

ACM Computing Surveys, Vol. 21, No. 3, September 1989

sending messages to particular recipients.
Consider also the dynamics of a master-
worker program, the kind of program that
represents the most flexible embodiment of
agenda parallelism. We have a collection of
workers and need to distribute tasks, gen-
erally on the fly. Where do we keep the
tasks? Again, a distributed data structure
is the most natural solution. If the subtasks
that make up an agenda item are strictly
parallel, with no necessary ordering among
them, the master process can store task
descriptors in a distributed bag structure;
workers repeatedly reach into the bag and
grab a task. In some cases, tasks should be
started in a certain order (even if many can
be processed simultaneously); in this case,
tasks will be stored in some form of distrib-
uted queue structure.

For example, we discussed a parallel da-
tabase search carried out in terms of the
master-worker model. The bag into which
the master process drops employee records
is naturally implemented as a distributed
data structure-as a structure, in other
words, that is directly accessible to the
worker processes and the master.

1.4 An Example

Consider a naive n-body simulator: On each
iteration of the simulation, we calculate the
prevailing forces between each body and all
the rest, and update each body’s position
accordingly.6 We will consider this problem
in the same way we considered house build-
ing. Once again, we can conceive of result-
based, agenda-based, and specialist-based
approaches to a parallel solution.

We can start with a result-based ap-
proach. It’s easy to restate the problem
description as follows: Suppose we are
given n bodies and want to run q iterations
of our simulation; compute a matrix M such
that M[i, j] is the position of the ith body
after the jth iteration. The zeroth column
of the matrix gives the starting position,

‘There is a better (O(n)) approach to solving the n-
body problem, developed by Greengard and Rokhlin
[1987] of Yale; the new algorithm can be parallelized,
but to keep things simple, we use the old approach as
a basis for this discussion.

332 l N. Carrier0 and D. Gelernter

Position after 4th iteration

q Terminated

q Active

Figure 4. A live-data-structure approach to the n-body prob-
lem. To begin, we build an n X q matrix and install a process
inside each element. The process trapped in element M[i, j] will
compute the position of the ith body after the jth iteration, by
referring to the previous column, in which each body’s last-
known position will appear. The processes in column j are stuck
until the processes in column j - 1 terminate, at which point all
of column j can be computed in parallel. Thus, each column
computes in parallel until values are known for the entire matrix.

can store information about each body’s does so, and the cycle repeats (Figure 6).
position at the last iteration in a distributed (A similar but slightly cleaned up version
table structure, where each worker can refer of such a program is described by Seitz
to it directly (Figure 5). [1985].)

Finally, we might use a specialist-parallel
approach: We create a series of processes,
each one specializing in a single body-that
is, each responsible for computing a single
body’s current position throughout the sim-
ulation. At the start of each iteration, each
process informs each other process by mes-
sage of the current position of its body. All
processes are behaving in the same way; it
follows that, at the start of each iteration,
each process sends data to but also receives
data from each other process. The data
included in the incoming crop of mes-
sages are sufficient to allow each process
to compute a new position for its body. It

1.5 How Do the Three Techniques Relate?

The methodology we are developing re-
quires (1) starting with a conceptual class
that is natural to the problem, (2) writing
a program using the programming method
that is natural to the class, and then, (3) if
necessary, transforming the initial program
into a more efficient variant that uses some
other method. If a natural approach also
turns out to be an efficient approach, then
obviously no transformation is necessary.
If not, it’s essential to understand the
relationships between the techniques and

ACM Computing Surveys, Vol. 21, No. 3, September 1989

How to Write Parallel Programs l 333

Tasks

Worker Processes

Figure 5. A distributed-data-structure version. At each iteration,
workers repeatedly pull a task out of a distributed bag and compute
the corresponding body’s new position, referring to a distributed
table for information on the previous position of each body. After
each computation, a worker might update the table (without
erasing information on previous positions, which may still be
needed) or might send newly computed data to a master process,
which updates the table in a single sweep at the end of each
iteration.

@ FVzee; ;IdrryeseIlling

Data object describing
this body’s current position

Figure 6. The message-passing version. Whereas the
live-data-structure program creates nq processes (q was
the number of iterations, and there are n bodies) and the
distributed-data-structure program creates any number
of workers it chooses, this message-passing program cre-
ates exactly n processes, one for each body. In each of the
other two versions, processes refer to global data structures
when they need information on the previous positions of
each body. (In the live-data-structure version, this global
data structure was the “live” structure in which the pro-
cesses themselves were embedded.) But in the message-
passing version, no process has access to any data object
external to itself. Processes keep each other informed by
sending messages back and forth.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

334 ’ N. Carrier0 and D. Gelernter

Figure 7. The game of parallelism.

D?lO~~liZl-<I
Data
Objects
__________.____...
Captive
Datn
Objects

the performance implications of each. After
describing the relationships in general, we
discuss one case of this transformation-for-
efficiency in some detail.

1.5.1 The Relationships

The main relationships are shown in Fig-
ure 7. Both live data structures and message
passing center on captive data objects:
Every data object is permanently associ-
ated with some process. Distributed-data-
structure techniques center on delocalized
data objects, objects not associated with
any one process, freely floating about on
their own. We can transform a live-data-
structure or a message-passing program
into a distributed structure program by us-
ing abstraction: We cut the data objects
free of their associated processes and put
them in a distributed data structure in-
stead, Processes are no longer required to
fix their attention on a single object or
group of objects; they can range freely. To
move from a distributed structure to a live-
data-structure or a message-passing pro-
gram, we use specialization: We take each
object and bind it to some process.

It is clear from the foregoing that live
data structures and message passing are
strongly related, but there are also some
important differences. To move from the
former to the latter, we need to make com-
munication explicit, and we may optionally
use clumping. A process in a live-data-
structure program has no need to commu-

nicate information explicitly to any other
process. It merely terminates, yielding a
value. In a message-passing program, a pro-
cess with data to convey must execute an
explicit “send-message” operation. When a
live-data-structure process requires a data
value from some other process, it references
a data structure; a message-passing process
will be required to execute an explicit
“receive-message” operation.

Why contemplate a move from live data
structures to message passing, if the latter
technique is merely a verbose version of the
former? It isn’t; message-passing tech-
niques offer an added degree of freedom,
which is available via “clumping.” A pro-
cess in a live-data-structure program devel-
ops a value and then dies. It can’t live on
to develop and publish another value. In
message passing, a process can develop as
many values as it chooses and disseminate
them in messages whenever it likes. It can
develop a whole series of values during a
program’s lifetime. Hence, clumping: We
may be able to let a single message-passing
process do the work of a whole collection
of live-data-structure processes.

Table 1 summarizes the relationships in
a different way. It presents an approxi-
mate and general characterization of the
three classes. There are counterexamples
in every category, but it’s useful to sum-
marize the spectrum of process and pro-
gram types, from the large number of
simple, tightly coordinated processes that
usua!ly occur in result parallelism, through

ACM Computing Surveys, Vol. 21, No. 3, September 1989

How to Write Parallel Programs l 335

Table 1. Rough Characterization of the Three Classes

Complexity of processes

Skills Tasks

Result
Specialist
Agenda

One
One
Many

One
Many
Many

Simpler

More complex

Program structure

Result
Specialist
Agenda

Number of processes

High
Moderate
Adjustable

Coordination

Tight
Moderate
Loose

the typically smaller collection of more
complex, more loosely coupled processes in
agenda parallelism.

1.5.2 Using Abstraction and Then Specialization
to Transform a Live-Data-Structure
Program

Having described some transformations in
the abstract, what good are they? We can
walk many paths through the simple net-
work in Figure 7, and we can’t describe
them all in detail. We take up one signifi-
cant case, describing the procedure in gen-
eral and presenting an example; we close
the section with a brief examination of
another interesting case.

Suppose we have a problem that seems
most naturally handled using result paral-
lelism. We write the appropriate live-data-
structure program, but it performs poorly,
so we need to apply some transformations.

First, why discuss this particular case?
When the problem is suitable, a live-data-
structure program is likely to be rather easy
to design and concise to express. It’s likely
to have a great deal of parallelism (with the
precise degree depending, obviously, on the
size of the result structure and the depend-
encies among elements). But it may also
run poorly on most current-generation par-
allel machines, because the live-data-struc-
ture approach tends to produce fine-grained
programs-programs that create a large
number of processes each one of which
does relatively little computing. Concretely,
if our resulting data structure is, say, a ten-
thousand-element matrix, this approach

will implicitly create ten thousand proc-
esses. There is no reason in theory why this
kind of program cannot be supported effi-
ciently, but on most current parallel com-
puters, there are substantial overheads
associated with creating and coordinating
large numbers of processes. This is partic-
ularly true on distributed-memory ma-
chines, but even on shared-memory
machines that support lightweight pro-
cesses: the potential gain from parallelism
can be overwhelmed by huge numbers
of processes, each performing a trivial
computation.

If a live-data-structure program performs
well, we’re finished; if it does not, a more
efficient program is easily produced by ab-
stracting to a distributed data-structure
version of the same algorithm. We replace
the live data structure with a passive one
and raise the processes one level in the
conceptual scheme: Each process fills in
many elements, rather than becoming a sin-
gle element. We might create one hundred
processes and have each process compute
one hundred elements of the result. The
resulting program is coarser grained then
the original-the programmer decides how
many processes to create and can choose a
reasonable number. We avoid the overhead
associated with huge numbers of processes.

This second version of the program may
still not be efficient enough, however. It
requires that each process read and write a
single data structure, which must be stored
in some form of logically shared memory.
Accesses to a shared memory will be more
expensive than access to local structures.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

336 l N. Carrier-o and D. Gelernter

Ordinarily this isn’t a problem; distributed
data-structure programs can be supported
efficiently even on distributed-memory
(e.g., hypercube) machines. But, for some
communication-intensive applications, and
particularly on distributed-memory ma-
chines, we may need to go further in order
to produce an efficient program. We might
produce a maximally efficient third version
of the program by using specialization to
move from distributed data structures to
message passing. We break the distributed
data structure into chunks and hand each
chunk to the process with greatest interest
in that chunk. Instead of a shared dis-
tributed data structure, we now have a
collection of local data structures, each
encapsulated within and only accessible to
a single process. When some process needs
access to a “foreign chunk,” a part of the
data structure that it doesn’t hold locally,
it must send a message to the process that
does hold the interesting chunk, asking that
an update be performed or a data value
returned. This is a nuisance and usually
results in an ugly program, but it elimi-
nates direct references to any shared data
structures.

Under this scheme of things, we can see
a neat and well-defined relationship among
our three programming methods. We start
with an elegant and easily discovered but
potentially inefficient solution using live
data structures, move on via abstraction to
a more efficient distributed-data-structure
solution, and finally end up via specializa-
tion at a low-overhead message-passing
program. (We might alternatively have
gone directly from live data structures to
message passing via clumping.)

There is nothing inevitable about this
procedure. In many cases, it’s either inap-
propriate or unnecessary. It is inappro-
priate if live data structures are not a
natural starting point. It is unnecessary if
a live-data-structure program runs well
from the start. It is partially unnecessary
if abstraction leads to a distributed-data-
structure program that runs well; in this
case, there’s nothing to be gained by
performing the final transformation, and
something to be lost (because the message-
passing program will probably be sub-

stantially more complicated than the
distributed-data-structure version). It’s
also true that message-passing programs
are not always more efficient than distrib-
uted-data-structure versions; often they
are, but there are cases in which distributed
data structures are the optimal approach.

1.5.3 An Example

For example, returning to the n-body sim-
ulator, we discussed a live-data-structure
version; we also developed distributed-
data-structure and message-passing ver-
sions, independently. We could have used
the live-data-structure version as a basis
for abstraction and specialization as well.

Our live-data-structure program created
n X q processes, each of which computed a
single invocation of position and then ter-
minated. We can create a distributed-data-
structure program by abstraction. M is now
a distributed data structure-a passive
structure, directly accessible to all proc-
esses in the program. Its zeroth column
holds the initial position of each body; the
rest of the matrix is blank. We create k
processes and put each in charge of filling
in one band of the matrix. Each band is
filled in column-by-column. In filling in the
jth column, processes refer to the position
values recorded in the j - 1st column. We
now have a program in which number of
processes is under direct programmer con-
trol; we can run the program with two or
three processes if this seems reasonable (as
it might if we have only two or three pro-
cessors available). We have achieved lower
process-management overheads, but the
new program was easy to develop from the
original and will probably be only slightly
less concise and comprehensible.

Finally, we can use specialization to pro-
duce a minimal-overhead message-passing
program. Each process is given one band of
M to store in its own local variable space;
M no longer exists as a single structure.
Since processes can no longer refer directly
to the position values computed on the last
iteration, these values must be dissemi-
nated in messages. At the end of each
iteration, processes exchange messages;
messages hold the positions computed by

ACM Computing Surveys, Vol. 21, No. 3, September 1989

How to Write Parallel Programs 337

each process on the last iteration. We have
now achieved low process-management
overhead and also eliminated the overhead
of referring to a shared distributed data
structure. But the cost is considerable: The
code for this last version will be substan-
tially more complicated and messier than
the previous one, because each process will
need to conclude each iteration with a
message-exchange operation in which mes-
sages are sent, other messages are received,
and local tables are updated. We have also
crossed an important conceptual threshold:
Communication in the first two solutions
was conceived in terms of references to data
structures, a technique that is basic to all
programming. But the last version relies on
message passing for communication, thus
substituting a new kind of operation that
is conceptually in a different class from
standard programming techniques.

pose, for example, that we want to simulate
a ten-thousand-element circuit. It is natu-
ral to envision one process for each circuit
element, with processes exchanging mes-
sages to simulate the propagation of signals
between circuit elements. But this might
lead to a high-overhead program that runs
poorly. Abstraction, again, allows us to cre-
ate fewer processes and put each in charge
of one segment of a distributed data struc-
ture that represents the network state as a
whole.

In sum, there are many paths that a
programmer might choose to walk though
the state diagram shown in Figure 7. But
the game itself is simple: Start at whatever
point is most natural, write a program,
understand its performance, and then, if
necessary, follow the “efficiency” edges un-
til you reach an acceptable stopping place.

1.6 Where Are the Basic Techniques
1.5.4 When to Abstract and Specialize Supported?

How do we know whether we need to use
abstraction or to move onward to a mes-
sage-passing program? The decision is
strictly pragmatic; it depends on the appli-
cation, the programming system, and the
parallel machine. Consider one concrete
datum: Using C-Linda on current parallel
machines, specialization leading to a mes-
sage-passing program is rarely necessary.
Most problems have distributed-data-
structure solutions that perform well. In
this context, though, abstraction to a dis-
tributed-data-structure program usually is
necessary to get an efficient program.

Although it is our intention in this article
to survey programming techniques, not
programming systems, a brief guide to the
languages and systems in which the basic
techniques occur may be helpful.

1.5.5 Another Path through the Network:
Abstraction from Message Passing

When live-data-structure solutions are
natural, they may involve too many pro-
cesses and too much overhead, so we use
abstraction to get a distributed-data-
structure program. It’s also possible for a
message-passing, network-style program to
be natural, but to involve too many pro-
cesses and too much interprocess com-
munication, in which case we can use
abstraction, again, to move from message
passing to distributed data structures. Sup-

Message passing is by far the most wide-
spread of the basic models; it occurs in
many different guises and linguistic con-
texts. The best-known of message-passing
languages is Hoare’s influential fragment
CSP [Hoare 19781, which inspired a com-
plete language called Occam [May 19831.
CSP and Occam are based on a radically
tight-knit kind of message passing: Both
the sending and the receiving of a message
are synchronous operations. In both lan-
guages, a process with a message to send
blocks until the designated receiver has
taken delivery. CSP and Occam are static
languages as well: They do not allow new
processes to be created dynamically as a
program executes. CSP and Occam are for
these reasons not expressive enough to sup-
port the full range of message-passing-type
programs we discuss here.

Monitor and remote-procedure-call lan-
guages and systems are another subtype
within the message-passing category (with
a qualification we note below). In these

ACM Computing Surveys, Vol. 21, No. 3, September 1989

338 l N. Carrier0 and D. Gelernter

systems, communication is modeled on pro-
cedure call: One process communicates
with another by invoking a procedure de-
fined within some other process or within
a passive, globally accessible module. This
kind of quasi-procedure call amounts to a
specialized form of message passing: Argu-
ments to the procedure are shipped out in
one message, results duly returned in an-
other. The qualification mentioned above
is that, in certain cases, systems of this sort
are used for quasi-distributed-data-struc-
ture programs. A global data object can be
encapsulated in a module and then manip-
ulated by remotely invoked procedures.
(The same kind of thing is possible in any
message-passing system, but is more con-
venient given a procedure-style communi-
cation interface.) Why quasi-distributed
data structures? As we understand the
term, a distributed data structure is directly
accessible to many parallel processes si-
multaneously. (Clearly we may sometimes
need to enforce sequential access to avoid
corrupting data, but in general, many read
operations may go forward simultane-
ously-and many write operations that
affect separate and independent parts of
the same structure may also proceed simul-
taneously, for example, many independent
writes to separate elements of a single ma-
trix.) Languages in this class support data
objects that are global to many processes,
but in general, they allow processes one-at-
a-time access only. Nor do they support
plain distributed data objects; a global ob-
ject must be packaged with a set of access
procedures.

Monitors were first described by Hoare
[1974] and have been used as a basis for
many concurrent programming languages,
for example Concurrent Pascal [Brinch
Hansen 19751, Mesa [Lampson and Redell
19801 and Modula [Wirth 19771. (A con-
current language, unlike a parallel lan-
guage, assumes that multiple processes in-
habit the same address space.) Fairly
recently they have been revived for use
in parallel programming, in the form
of parallel object-oriented programming
languages (e.g., Emerald [Jul et al. 881). A
form of remote procedure call underlies
Ada [U.S. Department of Defense 19821;
Birrell and Nelson’s RPC kernel [Birrell

ACM Computing Surveys, Vol. 21, No. 3, September 1989

and Nelson 19841 is an efficient systems-
level implementation.

Another variant of message passing cen-
ters on the use of streams: Senders (in
effect) append messages to the end of a
message stream, and receivers inspect the
stream’s head. This form of communication
was first proposed by Kahn [1974] and
forms the basis for communication in most
concurrent logic languages (e.g., Concur-
rent Prolog [Shapiro 19871 and Parlog
[Ringwood 19881) and in functional lan-
guage extended with constructs for explicit
communication (e.g., [Henderson 19821).

Message passing of one form or another
appears as a communication method in
many operating systems-for example, the
V kernel [Cheriton and Zwaenpoel 19851,
Mach [Young et al. 19871 and Amoeba
[Mullender and Tanenbaum 19861.

Distributed data structures are less fre-
quently encountered. The term was intro-
duced in the context of Linda [Carrier0 et
al. 19861. Distributed data structures form
the de facto basis of a number of specialized
FORTRAN that revolve around parallel
do-loops, for example, Jordan’s Force sys-
tem [Jordan 19861. In this kind of system,
parallelism is created mainly by specifying
parallel loops-loops in which iterations
are executed simultaneously instead of se-
quentially. Separate loop iterations com-
municate through distributed structures
that are adaptations of standard FOR-
TRAN structures. Distributed data struc-
tures are central in Dally’s CST
[Dally 19881 and Bal and Tanenbaum’s
Orca [Bal and Tanenbaum 19871, and are
supported in MultiLISP [Halstead 19851 as
well.

Live data structures are a central tech-
nique in several languages that support
so-called nonstrict data structures-data
structures that can be accessed before they
are fully defined. Id Nouveau [Nikhil et al.
19861, MultiLISP [Halstead 19851, and
Symmetric LISP [Gelernter et al. 19871 are
examples. This same idea forms the im-
plicit conceptual basis for the large class of
functional languages intended for parallel
programming (e.g., ParAlfl [Hudak 19861,
Sisal [Lee et al. 19881 and Crystal
[Chen 19861). Programs in these languages
consist of a series of equations specifying

How to Write Parallel Programs l 339

values to be bound to a series of names.
One equation may depend on the values
returned by other equations in the set; we
can solve all equations simultaneously, sub-
ject to the operational restriction that an
equation referring to a not-yet-computed
value cannot proceed until this value is
available. The equivalent program in live-
data-structure terms would use each equa-
tion to specify the value of one element in
a live data structure.

2. PROGRAMMING TECHNIQUES FOR
PARALLELISM

We have discussed conceptual classes and
general methods. We turn now to the prac-
tical question: How do we build working
parallel programs? In this section we
sketch implementations of the pieces out
of which parallel programs are constructed.

We start with a systematic investigation
of distributed data structures. We give an
overview of the most important kinds of
distributed structures, when each is used,
and how each is implemented. This first
part of the discussion should equip readers
with a reasonable tool kit for building
distributed-data-structure programs. Of
course we intend to discuss all three pro-
gramming methods, but the other two are
easily derived from a knowledge of distrib-
uted data structures, as we discuss in the
following sections. We arrive at message
passing by restricting ourselves to a small
and specialized class of distributed struc-
tures. We arrive at live data structures by
building distributed structures out of pro-
cesses instead of passive data objects.

2.1 Linda

Linda consists of a few simple operations
that embody the “tuple-space” model of
parallel programming. A base language
with the addition of these tuple-space
operations yields a parallel-programming
dialect. To write parallel programs, pro-
grammers must be able to create and coor-
dinate multiple execution threads. Linda is
a model of process creation and coordina-
tion that is orthogonal to the base language
in which it is embedded. The Linda model

doesn’t care how the multiple execution
threads in a Linda program compute what
they compute; it deals only with how these
execution threads (which it sees as so many
black boxes) are created and how they can
be organized into a coherent program. The
following paragraphs give a basic introduc-
tion. Linda is discussed in greater detail
and contrasted with a series of other ap-
proaches in Carrier0 and Gelernter [1989].

The Linda model is a memory model.
Linda memory (called tuple space or TS)
consists of a collection of logical tuples.
There are two kinds of tuples: Process tu-
ples are under active evaluation; data tuples
are passive. The process tuples (which are
all executing simultaneously) exchange
data by generating, reading, and consuming
data tuples. A process tuple that is finished
executing turns into a data tuple, indistin-
guishable from other data tuples.

There are four basic TS operations, out,
in, rd, and eval, and two variant forms,
inp and rdp. out(t) causes tuple t to be
added to TS; the executing process contin-
ues immediately. in(s) causes some tuple t
that matches temp!ate s to be withdrawn
from TS; the values of the actuals in t are
assigned to the formals in s, and the exe-
cuting process continues. If no matching t
is available when in(s) executes, the exe-
cuting process suspends until one is, then
proceeds as before. If many matching t’s
are available, one is chosen arbitrarily.
rd(s) is the same as in(s), with actuals
assigned to formals as before, except that
the matched tuple remains in TS. Predicate
versions of in and rd, inp and rdp, attempt
to locate a matching tuple and return 0 if
they fail; otherwise, they return 1 and per-
form actual-to-formal assignment as de-
scribed above. (If and only if it can be
shown that, irrespective of relative process
speeds, a matching tuple must have been
added to TS before the execution of inp or
rdp and cannot have been withdrawn by
any other process until the inp or rdp is
complete, the predicate operations are
guaranteed to find a matching tuple.)
eval(t) is the same as out(t), except that
t is evaluated after rather than before it
enters TS; eval implicitly forks a new pro-
cess to perform the evaluation. When com-
putation of t is complete, t becomes an

ACM Computing Surveys, Vol. 21, No. 3, September 1989

340 l N. Carrier0 and D. Gelernter

ordinary passive tuple, which may be ined
or read like any other tuple.

A tuple exists independently of the pro-
cess that created it, and in fact many tuples
may exist independently of many creators
and may collectively form a data structure
in TS. It’s convenient to build data struc-
tures out of tuples because tuples are ref-
erenced associatively, somewhat like the
tuples in a relational database. A tuple is
a series of typed fields, for example, (“a
string”, 15.01, 17, “another string”)
or (0, 1). Executing the out statements

out (“a string”, 15.01, 17, “another
string”)

out(O, 1)

causes these tuples to be generated and
added to TS. (The process executing out
continues immediately.) An in or rd state-
ment specifies a template for matching:
Any values included in the in or rd must
be matched identically; formal parameters
must be matched by values of the same
type. (It is also possible for formals to ap-
pear in tuples, in which case a matching in
or rd must have a type-consonant value in
.the corresponding position.) Consider the
following statement:

in(“a string”, ? f, ? i, “another string”)

Executing this statement causes a search
of TS for tuples of four elements, first
element “a string” and last element “an-
other string”, middle two elements of the
same types as variables f and i respectively.
When a matching tuple is found, it is re-
moved, the value of its second field is as-
signed to f and its third field to i. The read
statement, for example,

rd(“a string”, ? f, ? i, “another string”)

works in the same way, except that the
matched tuple is not removed. The values
of its middle two fields are assigned to f
and i as before, but the tuple remains in
TS.

A tuple created using eval resolves into
an ordinary data tuple. Consider the follow-

ing statement:

eval(“e”, 7, exp(7)).

It creates a three-element “live tuple” and
continues immediately; the live tuple sets
to work computing the values of the string
“e”, the integer 7, and the function call
exp(7). The first two computations are
trivial (they yield “e” and 7); the third
ultimately yields the value of e to the sev-
enth power. Expressions that appear as
arguments to eval inherit bindings from
the environment of the eval-executing pro-
cess for whatever names they cite explicitly
and for read-only globals initialized at
compile time. Thus, executing eval(“Q”,
f(x, y)) implicitly creates a new process
and evaluates “Q” and f(x, y) in a context
in which the names f, y, and x have the
same values they had in the environment
of the process that executed eval. The
names of any variables that happen to be
free in f, on the other hand, were not cited
explicitly by the eval statement, and
no bindings are inherited for them.7 The
statement

rd(“e”, 7 , ? value))

might be used to read the tuple generated
by this eval, once the live tuple has re-
solved to a passive data tuple-that is, once
the necessary computing has been accom-
plished. (Executed before this point, it
blocks until the active computation has
resolved into a passive tuple.)

2.2 The Basic Distributed Data Structures

We can divide conventional “undistrib-
uted” data structures into three categories:
(1) structures whose elements are identical
or indistinguishable, (2) structures whose
elements are distinguished by name, and
(3) structures whose elements are distin-
guished by position. It’s useful to subdivide
the last category: (3a) structures whose ele-
ments are “random accessed” by position

‘Future versions of the system may disallow the in-
heritance by eval-created processes of read-only glob-
als. There are simple transformations from programs
that rely on this feature to ones that do not.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

How to Write Parallel Programs l 341

case need not be identical, but are treated
in a way that makes them indistinguish-
able. Bags are unimportant in sequential
programming, but extremely important to
parallel programming. The simplest kind of
replicated-worker program depends on a
bag of tasks. Tasks are added to the bag
using

out(“task”, TaskDescription)

and withdrawn using

in(“task”, ? NewTask)

A simple example: consider a program that
needs to apply some test to every
element of a large file. (In one experiment
we’ve done, the large file holds DNA
sequences, and the test is “compare each
sequence to a designated target sequence”;
we need to discover which sequences in a
database are “closest” under a string-
matching-like algorithm to some desig-
nated sequence.) The program consists of
a master and workers; the task is “compare
the target sequence to sequence s.” To with-
draw a sequence from the bag, workers
execute

in(“sequence”, ? seq)

The master reads sequences from the file
and adds them to the bag (using a low-
watermark algorithm to ensure that the bag
doesn’t overfill [Carrier0 and Gelernter
19881); to add a sequence, it executes

out(“sequence”, seq)

Note that we can regard the set of all
(“sequence”, value) tuples as a bag of
indistinguishable 2-tuples; alternatively,
we can say that “sequence” is the name of
a bag of values and that out(“sequence”,
seq) means “add seq to the bag called
“sequence”.”

Consider an example with some of the
attributes of each of the two previous cases.
Suppose we want to turn a conventional
loop, for example

for ((loop control))
(something)

ACM Computing Surveys, Vol. 21, No. 3, September 1989

and (3b) structures whose elements are
accessed under some ordering.

In the world of sequential programming,
category (1) is unimportant. A set of iden-
tical or indistinguishable elements qualifies
for inclusion, but such objects are rare in
sequential programming. Category (2) in-
cludes records, objects instantiated from
class definitions, sets and multisets with
distinguishable elements, associative mem-
ories, Prolog-style assertion collections,
and other related objects. Category (3a)
consists mainly of arrays and other struc-
tures stored in arrays, and category (3b)
includes lists, trees, graphs, and so on. Ob-
viously the groupings are not disjoint, and
there are structures that can claim mem-
bership in several.

The distributed versions of these struc-
tures don’t always play the same roles as
their sequential analogs. Factors with no
conventiona analogs can furthermore play
a major role in building distributed struc-
tures. Synchronization concerns arising
from the fact that a distributed structure is
accessible to many asynchronous processes
simultaneously form the most important
example. Notwithstanding, every conven-
tional category has a distributed analog.

2.2.1 Structures with Identical or
Indistinguishable Elements

The most basic of distributed data struc-
tures is a lock or semaphore. In Linda, a
counting semaphore is precisely a collection
of identical elements. To execute a V on a
semaphore “sem”,

out(“sem”);

to execute a P,

in(“sem”).

To initialize the semaphore’s value to n,
execute out(“sem”) n times. Semaphores
aren’t used heavily in most parallel appli-
cations (as opposed to most concurrent sys-
tems), but they do arise occasionally; we
elaborate in the next section.

A bag is a data structure that defines two
operations: “add an element” and “with-
draw an element.” The elements in this

342 l N. Carrier0 and D. Gelrernter

into a parallel loop-all instances of some-
thing execute simultaneously. This con-
struct is popular in parallel FORTRAN
variants. One simple way to do the trans-
formation has two steps: First we define a
function something() that executes one
instance of the loop body and returns, say,
1. Then we rewrite as follows:

for ((loop control))
eval(“this loop”, something());

for ((loop control))
in(“this loop”, 1);

We have, first, created n processes; each is
an active tuple that will resolve, when the
function call something() terminates, to
a passive tuple of the form (“this loop”,
1). Second, we collect the n passive result
tuples. These n may be regarded as a bag
or, equivalently, as a single counting sem-
aphore that is V’ed implicitly by each pro-
cess as it terminates. A trivial modification
to this example would permit each iteration
to “return” a result.

2.2.2 Name-Accessed Structures

Parallel applications often require access to
a collection of related elements distin-
guished by name. Such a collection resem-
bles a Pascal record or a C “struct.” We
can store each element in a tuple of the
form

(name, value)

To read such a “record field,” processes use
rd(name , ? val); to update it,

in(name, ? old);
out(name, new).

Consider, for example, a program that
acts as a real-time expert monitor: Given a
mass of incoming data, the system will post
notices when significant state changes oc-
cur; it must also respond to user-initiated
queries respecting any aspect of the current
state. One software architecture for such
systems is the so-called “process lattice”:
a hierarchical ensemble of concurrent pro-
cesses, with processes at the bottom level
wired directly to external sensors, and pro-
cesses at higher levels responsible for

ACM Computing Surveys, Vol. 21, No. 3, September 1989

increasingly more complex or abstract
states. The model defines a simple internal
information-flow protocol, with data flow-
ing up and queries downward, and each
node directly accessible at the user inter-
face. Our prototype deals with hemody-
namic monitoring in intensive care units
[Carrier0 and Gelernter 19881. Each pro-
cess records its current state in a named
tuple, whence it can be consulted directly
by any interested party. The process that
implements the “hypovolemia” decision
procedure, for example, can update its state
as follows:

in(“hypovolemia”, ? old)
out(“hypovolemia”, new).

Any process interested in hypovolemia
can read the state directly. These state-
describing tuples can thus be collectively
regarded as a kind of distributed record,
whose elements can be separately updated
and consulted.

As always, the synchronization charac-
teristics of distributed structures distin-
guish them from conventional counter-
parts. Any process attempting to read the
hypovolemia field while this field is being
updated will block until the update is com-
plete and the tuple is reinstated. Processes
occasionally need to wait until some event
occurs; Linda’s associative matching makes
this convenient to program. For example,
some parallel applications rely ‘on “barrier
synchronization”: Each process within
some group must wait at a barrier until all
processes in the group have reached the
barrier; then all can proceed. If the group
contains n processes, we set up a barrier
called barrier-37 by executing

out(“barrier-37”, n)

Upon reaching the barrier point, each pro-
cess in the group executes (under one
simple implementation)

in(“barrier-37”, ? val);
out(“barrier-37”, val-1);
rd(“barrier-37”, 0).

That is, each process decrements the value
of the field called barrier-37 and then
waits until its value becomes 0.

How to Write Parallel Programs l 343

22.3 Position-Accessed Structures

Distributed arrays are central to parallel
applications in many contexts. They can be
programmed as tuples of the form (Array
name, index fields, value). Thus, (“V”, 14,
123.5) holds the 14th element of vector V,
(“A”, 12, 18,5,123.5) holds one element
of the three-dimensional array A, and so
forth. For example, one way to multiply
matrices A and B, yielding C, is to store A
and B as a collection of rectangular blocks,
one block per tuple, and to define a task as
the computation of one block of the product
matrix. Thus, A is stored in TS as a series
of tuples of the form

(“A”, 1, 1, (first block of A))
(“A”, 1, 2, (second block of A))

and B likewise. Worker processes repeat-
edly consult and update a next-task tuple,
which steps though the product array
pointing to the next block to be computed.
If some worker’s task at some point is to
compute the i, jth block of the product, it
reads all the blocks in A’s ith row band and
B’s jth column band, using a statement
like

for (next=O; next < ColBlocks;
next++)

rd(“A”, i, next, ? RowBand[next])

for A and similarly for B; then, using
RowBand and ColBand, it computes the
elements of C’s i, jth block and concludes
the task step by executing the

out(“C”, i, j, Product)

Thus, “C” is a distributed array as well,
constructed in parallel by the worker pro-
cesses and stored as a series of tuples of the
form

(“C”, 1, 1, (first block of C))
(“C”, 1, 2, (second block of C)).

It’s worth commenting at this point on
the obvious fact that a programmer who
builds this kind of matrix-multiplication
program is dealing with two separate
schemes for representing data: the standard
array structures of the base language and a
tuple-based array representation. It would
be simple in theory to demote the tuple-

based representation to the level of assem-
bler language generated by the compiler:
Let the compiler decide which arrays are
accessed by concurrent processes and must
therefore be stored in TS; then have the
compiler generate the appropriate Linda
statements. Not hard to do-but would this
be desirable?

We tend to think not. First, there are
distributed data structures with no conven-
tional analogs, as we have noted; a sema-
phore is the simplest example. It follows
that parallel programmers will not be able
to rely exclusively on conventional forms
and will need to master some new struc-
tures regardless of the compiler. But it’s
also the case that the dichotomy between
local memory and all other memory is
emerging as a fundamental attribute (ar-
guably the fundamental attribute) of par-
allel computers. Evidence suggests that
programmers cannot hope to get good per-
formance on parallel machines without
grasping this dichotomy and allowing their
programs to reflect it. This is an obvious
point when applied to parallel architectures
without physically shared memory. Proces-
sors in such a machine have much faster
access to data in their local memories than
to data in another processor’s local mem-
ory-nonlocal data are accessible only via
the network and the communication soft-
ware. But hierarchical memory is also a
feature of shared-memory architectures.
Thus, we note an observation like the fol-
lowing, which deals with the BBN Butterfly
shared-memory multiprocessor:

Although the Uniform System [a BBN-
supplied parallel programming environ-
ment] provides the illusion of shared
memory, attempts to use it as such do
not work well. Uniform System programs
that have been optimized invariably
block-copy their operands into local
memory, do their computation locally,
and block-copy out their results. . . . This
being the case, it might be wise to opti-
mize later-generation machines for very
high bandwidth transfers of large blocks
of data rather than single-word reads and
writes as in the current Butterfly. We
might end up with a computational
model similar to that of LINDA. . . , with

ACM Computing Surveys, Vol. 21, No. 3, September 1989

344 l N. Carrier0 and D. Gelernter

naming and locking subsumed by the
operating system and the LINDA in,
read and out primitives implemented by
very high speed block transfer hardware.
[Olson 19861

Because the dichotomy between local and
nonlocal storage appears to be fundamental
to parallel programming, programmers
should (we believe) have a high-level,
language-based model for dealing with
nonlocal memory. TS provides such a
model.

Returning to position-accessed distrib-
uted data structures, synchronization prop-
erties can again be significant. Consider a
program to compute all primes between 1
and n (we examine several versions of this
program in detail in the last section). One
approach requires the construction of a dis-
tributed table containing all primes known
so far. The table can be stored in tuples of
the following form:

rprimes”, 1, 2)
(“primes”, 2, 3)
(Uprimes”, 3, 5)
. . .

A worker process may need the values of
all primes up to some maximum; it reads
upward through the table, using rd state-
ments, until it has the values it needs. It
may be the case, though, that certain values
are still missing. If all table entries through
the Kth are needed, but currently the table
stops at j for j < k, the statement

rd(“primes”, j + 1, ? val)

blocks-there is still no j + 1st element in
the table. Eventually the j + 1st element
will be computed, the called-for tuple will
be generated, and the blocked rd statement
will be unblocked. Processes that read past
the end of the table will simply pause, in
other words, until the table is extended.

Ordered or linked structures make up
the second class of position-accessed data
structures. It’s possible to build arbitrary
structures of this sort in TS; instead of
linking components by address, we link by
logical name. If C, for example, is a cons
cell linking A and B, we can represent it as

the tuple

(9.2 “, “cons”, cell),

where cell is the two-element array [“A”,
“B”]. If “A” is an atom, we might have

(“A”, “atom”, value).

For example, consider a program that
processes queries based on Boolean com-
binations of keywords over a large data-
base. One way to process a complex query
is to build a parse tree representing the
keyword expression to be applied to the
database; each node applies a subtransfor-
mation to a stream of database records
produced by its inferiors-a node might
and together two sorted streams, for ex-
ample. All nodes run concurrently. A Linda
program to accomplish this might involve
workers executing a series of tasks that are
in effect linked into a tree; the tuple that
records each task includes “left,” “right,”
and “parent” fields that act as pointers to
other tasks [Narem 19881. Graph struc-
tures in TS arise as well; for example, a
simple shortest-path program [Gelernter et
al. 19851 stores the graph to be examined
one node per tuple. Each node-tuple has
three fields: the name of the node, an array
of neighbor nodes (Linda supports variable-
sized arrays in tuples), and an array of
neighbor edge-lengths.

These linked structures have been fairly
peripheral in our programming experi-
ments to date. But there is one class of
ordered structure that is central to many of
the methods we have explored, namely
streams of various kinds. There are two
major varieties, which we call in-streams
and read-streams. In both cases, the stream
is an ordered sequence of elements to which
arbitrarily many processes may append. In
the in-stream case, each one of arbitrarily
many processes may, at any time, remove
the stream’s head element. If many pro-
cesses try to remove an element simultane-
ously, access to the stream is serialized
arbitrarily at run time. A process that tries
to remove from an empty stream blocks
until the stream becomes nonempty. In the
read-stream case, arbitrarily many pro-

ACM Computing Surveys, Vol. 21, No. 3, September 1989

How to Write Parallel Programs l 345

cesses read the stream simultaneously:
Each reading process reads the stream’s
first element, then its second element, and
so on. Reading processes block, again, if the
stream is empty.

In- and read-streams are easy to build in
Linda. In both cases, the stream itself con-
sists of a numbered series of tuples:

(‘Lstrm”, 1, vall)
(“strm”, 2, va12)
. . .

The index of the last element is kept in a
tail tuple:

(“strm”, “tail”, 14)

To append NewElt to “strm”, processes
use the following:

in(“strm”, “tail”, ? index);
/* consult tail pointer */

out(“strm”, “ tail”, index+ 1);
out(“strm”, index, NewElt);

/* add element */

An in-stream needs a head tuple also, to
store the index of the head value (i.e., the
next value to be removed); to remove from
the in-stream “strm”, processes use

in(“strm”, “head”, ? index);
/* consult head pointer */

out(“strm”, “head”, index+l);
in(“strm”, index, ? Elt);

/* remove element */.

Note that, when the stream is empty,
blocked processes will continue in the order
in which they blocked. If the first process
to block awaits the jth tuple, the next
blocked process will be waiting for the
j + lst, and so on.

A read-stream dispenses with the head
tuple. Each process reading a read-stream
maintains its own local index; to read each
element of the stream, we use

index = 1;
(loop) (

rd(“strm”, index++, ? Elt);
. . .

1

As a specialization, when an in-stream is
consumed by only a single process, we can
again dispense with the head tuple and
allow the consumer to maintain a local
index. Similarly, when a stream is ap-
pended-to by only a single process, we can
dispense with the tail tuple, and the pro-
ducer can maintain a local index.

In practice, various specializations of
in- and read-streams seem to appear more
often than the fully general versions.

Consider, for example, an in-stream with
a single consumer and many producers.
Such a stream occurs in one version of the
prime-finding program we discuss: Worker
processes generate a stream each of whose
elements is a block of primes; a master
process removes each element of the
stream, filling in a primes table as it goes.

Consider an in-stream with one producer
and many consumers. In a traveling-sales-
man program,’ worker processes expand
subtrees within the general search tree, but
these tasks are to be performed not in ran-
dom order but in a particular optimized
sequence. A master process writes an in-
stream of tasks; worker processes repeat-
edly remove and perform the head task.
(This structure functions, in other words,
as a distributed queue.)

Consider a read-stream with one pro-
ducer and many consumers. In an LU-
decomposition program [Bjornson et al.
19881, each worker on each iteration re-
duces some collection of columns against a
pivot value. A master process writes a
stream of pivot values; each worker reads
the stream.

2.3 Message Passing and Live Data
Structures

We can write a message-passing program
by sharply restricting the distributed data
structures we use: In general, a message-
passing program makes use only of streams.
The tightly synchronized message-passing
protocols in CSP, Occam and related lan-
guages represent an even more drastic re-
striction: Programs in these languages use

a Written by Henri Bal of the Vrije Universiteit in
Amsterdam.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

346 l N. Carriero and D. Gelernter

no distributed structures; they rely only (in
effect) on isolated tuples.

It’s simple, then, to write a message-
passing program. First, we use eval to cre-
ate one process for each node in the logical
network we intend to model. Often we know
the structure of the network beforehand;
the first thing the program does, then, is to
create all the processes it requires. (Con-
cretely, C-Linda programs have an lmain
function that corresponds to main in a C
program. When the program starts, lmain
is invoked automatically. If we need to use
eval to create n processes immediately, the
eval statements appear in lmain.) In some
cases the shape of a logical network changes
while a program executes; we can use eval
to create new processes as the program
runs. Having created the processes we need,
we allow processes to communicate by writ-
ing and reading message streams.

Live-data-structure programs are also
easy to write given the passive distributed
structures we’ve discussed. Any distributed
data structure has a live as well as a passive
version. To get the live version, we simply
use eval instead of out in creating tuples.
For example, we’ve discussed streams of
various kinds. Suppose we need a stream of
processes instead of passive data objects.
If we execute a series of statement of the
form

eval(“live stream”, i, f(i)),

we create a group of processes in TS:

(“live stream”, 1,
(computation of f(1)))

(“live stream”, 2,
(computation of f(2)))

(“live stream”, 3,
(computation of f(3)))

. . .

If f is, say, the function “factorial,” then
this group of processes resolves into the
following stream of passive tuples:

(“live stream”, 1, 1)
(“live stream”, 2,2)
(“live stream”, 3, 6)
. . .

To write a live-data-structure program,
then, we use eval to create one process for

each element in our live structure. (Again,
lmain will execute the appropriate evals.)
Each process executes a function whose
value may be defined in terms of other
elements in the live structure. We can use
ordinary rd or in statements to refer to the
elements of such a data structure. If rd or
in tries to find a tuple that is still under
active computation, it blocks until compu-
tation is complete. Thus, a process that
executes

rd(“live stream”, 1, ? x)

blocks until computation of f(1) is com-
plete, whereupon it finds the tuple it is
looking for and continues.

3. PUTTING THE DETAILS TOGETHER

Finding all primes between 1 and n is a
good example problem for two reasons:
(1) It’s not significant in itself, but there
are significant problems that are similar; at
the same time, primes finding is simple
enough to allow us to investigate the entire
program in a series of cases. (2) The prob-
lem can be approached naturally under sev-
eral of our conceptual classes. This gives us
an opportunity to consider what is natural
and what isn’t natural, and how different
sorts of solution can be expressed.

3.1 Result Parallelism and Live Data
Structures

One way to approach the problem is by
using result parallelism. We can define the
result as an n-element vector; j’s entry is 1
if j is prime, and otherwise 0. It’s easy to
see how we can define entry j in terms of
previous entries: j is prime if and only if
there is no previous prime less than or equal
to the square root of j that divides it.

To write a C-Linda program using this
approach, we need to build a vector in TS;
each element of the vector will be defined
by the invocation of an is-prime function.
The loop

for(i = 2; i < LIMIT; ++i) (
eval(“primes”, i, is-prime(i));

1

creates such a vector. As discussed in Sec-
tion 2.2.3, each tuple-element of the vector

ACM Computing Surveys, Vol. 21, No. 3, September 1989

How to Write Parallel Programs l 347

is labeled with its index. We can now read
the j th element of the vector by using

rd(“primes”, j, ? ok).

The program is almost complete. The is-
prime(SomeIndex) function will involve
reading each element of the distributed vec-
tor through the square root of i and, if the
corresponding element is prime and divides
i, returning zero;g thus,

limit = sqrt((double) SomeIndex) + 1;

for (i = 2; i < limit; ++i) (
rd(“primes”, i, ? ok);
if (ok && (SomeIndex% == 0))

return 0;
I
return 1;

The only remaining problem is producing
output. Suppose that the program is in-
tended to print all primes 1 through
LIMIT. Easily done: We simply read the
distributed vector and print i if i’s entry
is 1:

for(i = 2; i <= LIMIT; ++i) (
rd(“primes”, i, ? ok);
if (ok) printf(“%d\n”, i);

I

The complete program” is shown in Fig-
ure 8.

3.2 Using Abstraction to Get an Efficient
Version

This program is concise and elegant, and
was easy to develop. It derives parallelism
from the fact that, once we know whether
k is prime, we can determine the primality
of all numbers from k + 1 through 112’. But
it is potentially highly inefficient: It creates
large numbers of processes and requires
relatively little work of each. We can

B In practice, it might be cheaper for the ith process to
compute all primes less than root of i itself, instead of
reading them via rd. But we are not interested in
efficiency at this stage.
lo Users of earlier versions of C-Linda will note that,
although formals used to be addresses, for example,
“? &ok,” C-Linda 2.0 assumes that formals will be
variables, on analogy with the left side of assignment
statements. The code examples use the new version.

Imain
c

int i. ok;

for(i = 2; i < LIMIT; ++i) {
eval(“primes”, i, is-prime(i));

I

for(i -= 2; i <= LIMIT; ++i) {
rd(“primea”, i, 7 ok) ;
if (ok) printf (‘?!d\n”, i);

1

1

is-prime(me)
int me;

q
int i, limit, ok;
double sqrt0 ;

limit - sqrt((double) me) + 1;

for (i = 2; i < limit; ++i) {
rd("primes", i, 7 ok);
if (ok t& (meXi == 0)) return 0;

1
return 1;

1

Figure 8. Prime finder: Result parallelism.

use abstraction to produce a more effi-
cient, agenda-parallel version. We reason as
follows:

(1) Instead of building a live vector in
TS, we can use a passive vector and create
worker processes. Each worker chooses
some block of vector elements and fills in
the entire block. “Determine all primes
from 2001 through 4000” is a typical task.

Tasks should be assigned in order: The
lowest block is assigned first, then the next-
lowest block, and so forth. If we have filled
in the bottom block and the highest prime
it contains is k, we can compute in parallel
all blocks up to the block containing k’.

How do we assign tasks in order? We
could build a distributed queue of task as-
signments, but there is an easier way. All
tasks are identical in kind; they differ only
in starting point. So we can use a single
tuple as a next-task pointer, as we discuss

ACM Computing Surveys, Vol. 21, No. 3, September 1989

348 l N. Carrier0 and D. Gelernter

in the matrix-multiplication example in
Section 2.2.3. Idle workers withdraw the
next-task tuple, increment it, and then
reinsert it, so the next idle worker will be
assigned the next block of integers to ex-
amine. In outline, each worker will execute
the following:

while(l) (
in(“next task”, ? start);
out(“next task”, start + GRAIN);

(find all primes from start to start +
GRAIN)

builds the table. Workers attach batches of
primes to the end of an in-stream, which in
turn is scanned by the master. Instead of
numbering the stream using a sequence of
integers, they can number stream elements
using the starting integer of the interval
they have just examined. Thus, the stream
takes the following form:

(“result”, start, FirstBatch);
(“result”, start+GRAIN,

SecondBatch);
(“result”, start+(iZ*GRAIN)

ThirdBatch);
. . .

GRAIN is the size of each block. The
The master scans the stream by execut-

value of GRAIN, which is a nrogrammer-
ing the following loop.

defined constant over each run, determines for (num = first-num; num < LIMIT;
the granularity or task size of the compu- num += GRAIN) (
tation. The actual code is more involved in(“result”, num. ? new-urimes);
than this: Workers check for the termina- . - ”
tion condition and leave’ a marker value in (record the new batch for eventual

the next-task tunle when thev find it. (See output);

the code in Figures 9 and 10 for details:) (construct the distributed primes

(2) We have accomplished “abstrac-
table);

tion,” and we could stop here. But, since 1.
the goal is to produce an efficient program,
there is another obvious optimization. In-
stead of storing a distributed bit vector with
one entry for each number within the range
to be searched, we could store a distributed
table in which all primes are recorded. The
ith entry of the table records the ith prime
number. The table has many fewer entries
than the bit vector and is therefore cheaper
both in space and in access time. (To read
all primes up to the square root of j will
require a number of accesses propor-
tional not to 4, but to the number of
primes through 4.)

primes have been found so far and therefore
cannot construct table entries for new
primes without additional information, We
could keep a primes count in TS, but
it’s also reasonable to allow a master pro-
cess to construct the table.

We will therefore have workers send

A worker examining some arbitrary block
of integers doesn’t know a priori how many

This loop dismantles the stream in order,
ining the first element and assigning it to
the variable new-primes, then the second
element, and so on.

The master’s job is now to record the
results and to build the distributed primes
table. The workers send prime numbers in
batches; the master disassembles the
batches and inserts each prime number into
the distributed table. The table itself is a
standard distributed array of the kind dis-
cussed previously. Each entry takes the
form:

We store the square of the ith prime along
with the prime itself so that workers can
simply read, rather than having to com-
pute, each entry’s square as they scan up-
ward through the table. For details, see
Figure 10.

(“primes”, i, (ith prime),
(ith prime squared)).

their newly discovered batches of primes to (3) Again, we could have stopped at this
the master process; the master process point, but a final optimization suggests it-

ACM Computing Surveys, Vol. 21, No. 3, September 1989

How to Write Parallel Programs l 349

#include "1inda.h"

#define GRAIN 2000
#define LIMIT 1000000
#define N'UH-INIT,PRIHE 15

long primes[LIHIT/iO+ll =
C2.3, 5, 7, 11, 13, 17, 19. 23, 29, 31, 37, 41, 43, 47);

Pong p2[LIHIT/lO+i] =
{4,9.25.49,121,169,289,361,529,841,961~13690 1681,1849,2209>;

lmain(argc, argv)
int argc:
char +argv[J;

c
int eot. first-num, i, num, num-primes, num-workers;
long new-primee[CRAIN], np2;

nur,vorkere - atoi.(argv[l]);
for (i = 0; i < nun-vorkera; ++i)

eval("worker", vorker0);

num-primes - HUFF-INIT-PRIHE;
first,num * primesCnum-primes-l] + 2;

out (“next task”, f irst-num) ;

eot = 0; /t becomes 1 at “end of table" -- i.e., table complete l /
for (nun - first-nun; num < LIMIT; num += GRAIN) {

in("reault", num, ? new-primes: size);

ior (i ii * 0; i < size; v-i, ++numprimes', E
primes[num,primesl = nev_primesCil;

if (!eot) C
np2 = new-primes[i]+neu-primes[il;
if (np2 > LIHIT) {

eot = 1;
np2 = -1;

I
out("primea", num-primes. new-primesCi1, np2);
I

I
1
/* " ? int" means "match any int; throw out the value" */
for (i = 0; i < nlit-=oikeie; t:i) L("-iorkei-" , ? >..A\. I.Lb,)

printf("%d: %d\n", num-primes, primes[num-primes-l]);
1

Figure 9. Prime finder (master): Agenda parallelism.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

350 l N. Carrier0 and D. Gelernter

worker ()

(.
long count, eot, i. limit, num, num-primes, ok, start;
long my-priaes[GRAINl;

num-primes = NW-INIT,PRME;

eot = 0;
while(l) {

in("nert task" , ? num);
if (num == -1) (.

out("next task” , -1);
return;

3
limit = nun + GRAIN;
out(%ext task", (limit > LIMIT) ? -1 : limit);
if (limit > LIMIT) limit = LIIIIT;

start =num;
for (count = 0; num < limit; num += 21 {

while (!eot t& num > p2[num-primes-l]) {
rd("primes". num-primes, ? primesbum-primes]. ? p2[num-primes]);
if (pZ[num-primes] < 01

eot = 1;
else

++num-primes;
1
for (i = 1. ok = 1; i < num-primes; ++i) {

if (!(num%primesCil)) i
ok = 0;
break;

I
if (num < p2[il) break;

3
if (ok) {

my-primes[countl = mm;
++count ;

I
3
/* Send the control process any primes found. */
out("result") start, my-primes: count);

1
1

Figure 10. Prime finder (worker): Agenda parallelism.

self. Workers repeatedly grab task assign- references to the distributed global table by
ments and then set off to find all primes building local copies. Global references
within their assigned interval. To test for (references to objects in TS) are more
the primality of k, they divide k by all expensive than local references.
primes through the square root of k; to find Whenever a worker reads the global
these primes, they refer to the distributed primes table, it will accordingly copy the
primes table. But they could save repeated data it finds into a local version of the table.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

How to Write Parallel Programs l 351

eight Ethernet-connected IBM RTs under
Unix,‘l we get roughly a 5.6-times speedup
over sequential running time, for an effi-
ciency of about 70 percent. Somewhat lower
efficiencies on coarser-grained problems
are still very satisfactory on local-area nets.
Communication is far more expensive on a
local-area net than in a parallel computer,
and for this reason networks are problem-
atic hosts for parallel programs. They are
promising nonetheless because, under some
circumstances, they can give us something
for nothing: Many computing sites have
compute-intensive problems, lack parallel
computers, but have networks of occasion-
ally underused or (on some shifts) idle
workstations. Converting wasted worksta-
tion cycles into better performance on par-
allel programs is an attractive possibility.12

In comparing the agenda- to the result-
parallel version, it’s important to keep in
mind that the more complicated and effi-
cient program was produced by applying a
series of simple transformations to the el-
egant original. So long as a programmer
understands the basic facts in this do-
main-how to build live and passive dis-
tributed data structures, which operations
are relatively expensive and which are
cheap-the transformation process is con-
ceptually uncomplicated and can stop at
any point. In other words, programmers
with the urge to polish and optimize (i.e.,
virtually all expert programmers) have the
same kind of opportunities in parallel as in
conventional programming.

Note that, for this problem, agenda par-
allelism is probably less natural than result
parallelism. The point here is subtle, but is
nonetheless worth making. The most nat-
ural agenda-parallel program for primes
finding would probably have been con-
ceived as follows: Apply T in parallel to all
integers from 1 to limit, where T is simply
“determine whether n is prime.” If we
understand these applications of T as com-
pletely independent, we have a program
that will work and is highly parallel. It is

I’ Unix is a trademark of AT&T Bell Laboratories.
I2 The iPSC-2 system is largely the work of Robert
Bjornson and the Unix LAN kernel of Mauricio
Arango and Donald Berndt.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

It now refers to the global table only when
its local copy needs extending. This is an
optimization similar in character to the
specialization we described in Section 1: It
saves global references by creating multiple
local structures. It isn’t “full specializa-
tion,” though, because it doesn’t eliminate
the global data structure, merely econo-
mizes global references.

Workers store their local tables in two
arrays of longs called primes and p2 (the
latter holds the square of each prime).
Newly created workers inherit copies of
these global arrays (declared above the
master’s code in Figure 9) when they are
created. The notation object: count in a
Linda operation means “the first count
elements of the aggregate named object”;
in an in or a rd statement, ? object: count
means that the size of the aggregate as-
signed to object should be returned in
count.

3.3 Comments on the Agenda Version

This version of the program is substantially
longer and more complicated than the orig-
inal result-parallel version. On the other
hand, it performs well in several widely
different environments. On one processor
of the shared-memory Sequent Symmetry,
a sequential C program requires about 459
seconds to find all primes in the range of
one to three million. Running with 12 work-
ers and the master on 13 Symmetry proces-
sors, the C-Linda program in Figures 9 and
10 does the same job in about 43 seconds,
for a speedup of about 10; relative to the
sequential version, giving an efficiency of
about 82 percent. One processor of an Intel
iPSC-2 hypercube requires about 421 sec-
onds to run the sequential C program; 1
master and 63 workers running on all 64
nodes of our machine require just under 8
seconds, for a speedup of about 52; and an
efficiency of, again, roughly 82 percent.

If we take the same program and increase
the interval to be searched in a task step
by a factor of 10 (this requires a change to
one line of code: We define GRAIN to be
20,000), the same code becomes a very
coarse-grained program that can perform
well on a local-area network. Running on

352 . N. Carrier0 and D. Gelernter

not an attractive solution, though, because First, how will integers be communicated
it’s blatantly wasteful: In determining between pipe segments? We can use a sin-
whether j is prime, we can obviously make gle-producer, single-consumer in-stream.
use of the fact that we know all previous Stream elements look like
primes through the square root of j.

The master-worker program we devel- (“seg”, (destination), (stream index),
oped on the basis of the result-parallel ver- (integer)).

sion is more economical in approach, and
we regard this version as a “made” rather

I.I ere, destination means “next pipe seg-

than a “born” distributed-data-structure
ment”; we can identify a pipe segment by

program.
the prime it is responsible for. Thus, a pipe
segment that removes multiples of 3 ex-
pects a stream of the form

3.4 Specialist Parallelism (“seg”, 3, (stream index), (integer)).
Primes finding had a natural result-parallel
solution, and we derived an agenda-parallel How will we create new pipe segments?

solution. There is a natural specialist- Clearly, the “sink” will use eval; when it

parallel solution as well. creates a new segment, the sink detaches

The sieve of Eratosthenes is a simple its own input stream and plugs this stream

prime-finding algorithm in which we imag- into the newly created segment. Output

ine passing a stream of integers through a from the newly created segment becomes

series of sieves: A 2-sieve removes multiples the sink’s new input stream. The details

of 2, a 3-sieve likewise, then a &sieve, and are shown in Figure 11.

so forth. An integer that has emerged suc- The code in Figure 11 produces as output

cessfully from the last sieve in the series is merely a count of the primes discovered. It

a new prime. It can be ensconced in its own could easily have developed a table of

sieve at the end of the line. primes and printed the table. There is a

We can design a specialist-parallel pro- more interesting possibility as well. Each

gram based on this algorithm. We imagine segment of the pipe is created using eval;

the program as a pipeline that lengthens as hence, each segment turns into a passive

it executes. Each pipe segment implements tuple upon termination. Upon termination

one sieve (i.e., specializes in a single prime). (which is signaled by sending a 0 through

The first pipe segment inputs a stream of the pipe), we could have had each seg-

integers and passes the residue (a stream ment yield its prime. In other words, we

of integers not divisible by 2) onto the next could have had the program collapse upon

segment, which checks for multiples of 3 termination into a data structure of the

and so on. When the segment at the end of form’
the pipeline finds a new prime, it extends
the sieve by attaching a new segment to the

(“source”, 1,2)

end of the program.
(“pipe seg~,, 2, 3)

One way to write this program is to start
(“pipe seg”, 3, 5)

with a two-segment pipe. The first pipe
(“pipe seg,~, 4, 7)

segment generates a stream of integers; the * . :
last segment removes multinles of the last-

(“sink”, MaxIndex, MaxPrime).

knownprime. When the last segment (the
“sink”) discovers a new greatest prime, it
inserts a new pipe segment directly before
itself in line. The newly inserted segment
is given responsibility for sieving what had
formerly been the greatest prime. The sink
takes over responsibility for sieving the new
greatest prime. Whenever a new prime is
discovered, the process repeats.

We could then have walked over and
printed out this table.

This solution allows less parallelism than
the previous one. To/see why, consider the
result-parallel algori m: It allowed simul-
taneous checking o P all primes between
k + 1 and 12’ for each new prime k. Suppose
there are p primes in this interval for some
k. The previous algorithm allowed us to

ACM Computing Surveys, Vol. 21, No. 3, September 1989

How to Write Parallel Programs l 353

Imain
I

eval("source" , source()) ;
eval("sink", sink());

I
source 0
f

int i, out-index = 0;

for (i = 5: i < LIXIT; i += 2) out("seg", 3, out-index++, i);
out("seg", 3. out-index, 0);

I
aink

int in-index - 0. nun, prime - 3, prime-count = 2;

while(l) C
in("seg", prime, in-index++, ? num);
if (!num) break;
if (num X prime) C

++prime-count;
if (num+num < LIMIT) {

eval("pipe aeg", pipe-seg(prime, num. in-index));
prime = num;
in-index = 0;

I
1

1
printf("count: %d.\n", prime-count);

1
pipe-seg(prime, next, in-index)

int prime, next, in-index;
C

int num, out-index = 0;

while(l) 1
in("seg", prime. in-index++, ? num);
if (!num) t

out("seg", next, out-index, num);
return;

1
if (num X prime) out("eeg", next, out-index++, rune);

1
1

Figure 11. Prime finder: Specialist parallelism.

discover all p simultaneously, but in this of discoveries; but the discoveries still occur
version they are discovered one at a time, sequentially.
the first prime after k causing the pipe to The specialist-parallel solution is not
be extended by one stage, then the next quite as impractical as the result-parallel
prime, and so on. Because of the pipeline, version, but it is impressively impractical
“one at a time” means a rapid succession nonetheless. Consider one data point: In

ACM Computing Surveys, Vol. 21, No. 3, September 1989

354 l N. Carrier0 and D. Gelernter

searching the range from one to one thou-
sand, the structure-parallel version is 30
times slower on an 1%processor Multimax
than the sequential C program on a single
processor. These results make an instruc-
tive demonstration of an important if
largely sub rosa phenomenon in parallel
programming. A parallel program is always
costlier than a conventional, sequential
version of the same algorithm: Creating and
coordinating processes take time. Running
an efficient parallel program on many pro-
cessors allows us to recoup the overhead
and come out ahead in absolute terms; thus,
the master-worker primes-finding experi-
ment demonstrates absolute speedup over
a comparable sequential program. An in-
efficient parallel program may demonstrate
impressive relative speedup-it may run
faster on many processors than on one,
which is true of the specialist-parallel pro-
gram under discussion-without ever am-
ortizing the “overhead of parallelization”
and achieving absolute speedup. Readers
should be alert to this point in assessing
data on parallel programming experiments.

For this problem, our specialist-parallel
approach is clearly impractical. Those are
the breaks. But readers should keep in mind
that exactly the same program structure
could be practical if each process had more
computing to do. In some related problem
areas, this would be the case. Furthermore,
the dynamic, fine-grained character of this
program makes it an interesting but not
altogether typical example of the message-
passing genre. A static, coarse-grained
message-passing program (e.g., of the sort
we described in the context of the n-body
problem) would be programmed using
many of the same techniques, but would be
far more efficient.

3.5 Simplicity

The prime-finding example raises a final
interesting question. Our efficient parallel
version is significantly more complicated
than a conventional, sequential prime
finder. Does parallelism mean that pro-
gramming necessarily becomes a more com-
plicated activity than it used to be?

It’s clear that a “simple problem” in the
sequential world is not necessarily still sim-
ple in the parallel world. But, to grasp the
implications of this fact, we need to con-
sider two others: Many problems that are
“sequentially simple” are also simple in
parallel, and some problems that are com-
plex under sequential assumptions are sim-
pler in parallel. Computing prime numbers
efficiently is the kind of problem that,
because of substantial interdependence
among subtasks and the “sequential” na-
ture of the underlying algorithm (larger
primes are determined on the basis of
smaller primes), is substantially trickier in
parallel than it is sequentially.13 Many of
the most successful and widely used appli-
cations of parallelism, on the other hand,
involve problems that are much simpler
than this to parallelize, and in these cases
the parallel codes are much closer to the
sequential originals. These problems gen-
erally parallelize at a fairly coarse grain and
require only limited intertask communica-
tion. They use exactly the same techniques
we have developed here. They are less in-
teresting as case studies, but often of great
practical significance. A final category of
application is simpler in parallel than it
would be as a sequential program. The ICU
monitor program discussed in Section 2.2.2
is a good example: It’s most naturally ex-
pressed as an ensemble of concurrently ac-
tive experts. This kind of application may
sound esoteric, but it’s our view that pro-
grams of this sort, programs involving large
collections of heterogeneous experts com-
municating via a simple global protocol,
will become increasingly widespread and
significant.

What’s the bottom line? It would be fool-
ish to deny, when all is said and done,
that parallelism does make programming a
more complex skill to master. Expanding
the range of choices makes any job harder;
expanding the capabilities of a machine
(whether a hardware or a software ma-

I3 As we discuss in [Carrier0 and Gelernter 19881, the
problem was brought to our attention by a researcher
who found it anything but simple to write an efficient
parallel solution to a related primes-finding problem.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

How to Write Parallel Programs l 355

we’ve discussed; larger parallel machines,
with thousands of nodes and more, will in
some cases require finer-grained programs
if they are to keep all their processors busy.
But the coarser-grained techniques are vir-
tually guaranteed to remain significant as
well. For one thing, they will be important
when parallel applications run on loosely
coupled nodes over local- or wide-area net-
works. (Whiteside and Leichter have re-
cently shown that a Linda system running
on 14 VAXes over a local-area network can,
in one significant case at least, beat a Cray
[Whiteside and Leichter 19881. This Cray-
beating Linda application is in production
use at SANDIA.) Coarser-grained tech-
niques will continue to be important on
“conventional” parallel computers as well,
so long as programmers are required or
inclined to find maximally efficient ver-
sions of their programs.

Attempting an initial survey of a new,
rapidly changing field is a difficult propo-
sition. We don’t claim that our categoriza-
tion is definitive. We’ve left some issues
out and swept others under the rug. We do
think that this survey is a reasonable start-
ing point, both for researchers intent on a
better understanding of the field as a whole
and for programmers with a parallel ma-
chine and some compute-intensive appli-
cations at hand. The evidence is clear:
Parallelism can lead to major gains in
performance; parallel programming is a
technique that any good programmer can
master. In short, as Portnoy’s analyst so
aptly put it [Roth 19851, Now uee may
perhaps to begin. Yes?

ACKNOWLEDGMENTS

Thanks to the Linda group at Yale and particularly
to its senior members-Robert Bjornson, Venkatesh
Krishnaswamy, and Jerrold Leichter-for vital con-
tributions to the research on which this paper is based.
Thanks to the referees and to Professor Peter Wegner
in particular for useful guidance. Thanks to Professor
Martin Schultz for his indispensable support for our
work and for the entire systems research effort at
Yale. Thanks finally to the National Science Foun-
dation and to the Office of Naval Research, who made
the work possible, and above all to Dr. Richard Lau
of ONR, a good example of the rarest and most

ACM Computing Surveys, Vol. 21, No. 3, September 1989

chine) often results in a more complicated
design. (Compare a color to a black-and-
white television, by way of analogy, or a
modern workstation to a PDP-8.)

The parallel primes finder is a more com-
plicated (software) machine than the se-
quential version, but it has acquired the
new and valuable capacity to spread itself
over a large collection of processors, where
the sequential version can’t cope with more
than one. Good programmers will have no
difficulty learning the new techniques in-
volved, and once they do, they will have
access to a new and powerful class of soft-
ware machinery.

4. CONCLUSIONS

In the primes example, one approach is the
obvious practical choice. But it is certainly
not true that, having canvassed the field,
we have picked the winner and identified
the losers; that’s not the point at all. The
performance figures quoted above depend
on the Linda system and the parallel
machine we used. Most important, they
depend on the character of the primes
problem. We lack space to analyze more
than one problem in this way. The fact is,
though, that in almost every case that we
have considered, an efficient parallel solu-
tion exists. Agenda-parallel algorithms pro-
grammed under the master-worker model
are often but not always the best stopping
point; all three methods can be important
in developing a good program. Discovering
a workable solution may require some work
and diligence on the programmer’s part, but
no magic and nothing different in kind
from the sketch-and-refine effort that is
typical of all serious programming. All that
is required is that the programmer under-
stand the basic methods at his disposal and
have a programming language that allows
him to say what he wants.

We expect technology to move in a direc-
tion that makes finer-grained programming
styles more efficient. This is a welcome
direction for several reasons: Fine-grained
solutions are often simpler and more ele-
gant than coarser-grained approaches, as

356 l N. Carrier0 and D. Gelernter

valuable species in computer science, the funding DEPARTMENT OF DEFENSE, U.S. 1982. Reference
visionary. Manual for the Ada Programming Language.

ACM AdaTEC, July.

REFERENCES

ASHCRAFT, C., CARRIERO, N., AND GELERNTER, D.
1989. Is explicit parallelism natural? Hybrid
DB search and sparse LDLT factorization using
Linda. Res. Rep. 744, Dept. of Computer Science,
Yale Univ., New Haven, Conn., Jan.

BAL, H. E., AND TANENBAUM, A. S. 1987. Orca: A
language for distributed object-based program-
ming. Internal Rep. 140, Dept. Wiskunde en In-
formatica, Vrije Universiteit, Amsterdam, Dec.

BIRRELL, A. D., AND NELSON, B. J. 1984.
Implementing remote procedure calls. ACM
Trans. Comput. Syst. 2, 1 (Feb.), 39-59.

BJORNSON, R., CARRIERO, N., AND GELERNTER, D.
1989. The implementation and performance of
hypercube Linda. Res. Rep. 690, Dept. of Com-
puter Science, Yale Univ., New Haven, Conn.,
Mar.

GELERNTER. D. 1989. Information management in
Linda. In M. Reeve and S. E. Zenith, edi., Parallel
processing and artificial intelligence, J. Wiley
(1989):/23-34. Proceedings of AI and Communi-
cating Process’ Architectures (London, July).

GELERNTER, D., JAGGANATHAN, S., AND LONDON, T.
1987. Environments as first class objects. In
Proceedings of the ACM Symposium on Principles
of Programming Languages (Munich, Jan.). ACM,
New York.

BJORNSON, R., CARRIERO, N., GELERNTER, D., AND
LEICHTER, J. 1988. Linda, the portable parallel.
Res. Rep. 520, Dept. of Computer Science, Yale
Univ., New Haven, Conn., Jan.

BORRMAN, L., HERDIECKERHOFF, M., AND KLEIN, A.
1988. Tuple space integrated into Modula-2,
Implementation of the Linda concept on a hier-
archical multiprocessor. In Proceedings of CON-
PAR ‘88, Jesshope and Reinartz, Eds. Cambridge
Univ. Press, New York.

BRINCH HANSEN, P. 1975. The programming lan-
guage Concurrent Pascal. IEEE Trans. Softw.
Eng. SE-I, 2, 199-206.

CARRIERO, N., AND GELERNTER, D. 1988.
Applications experience with Linda. In Proceed-
ings of the ACM Symposium on Parallel Program-
ming (New Haven, July). ACM, New York, pp.
173-187.

Proceedings of the ACM Symposium on Principles
of Programming Languages (St. Petersburg, Jan.).
ACM, New York.

CARRIERO, N., AND GELERNTER, D. 1989. Linda in
context. Commun. ACM 32,4 (Apr.), 444-458.

CARRIERO, N., GELERNTER, D., AND LEICHTER, J.
1986. Distributed data structures in Linda. In

GELERNTER, D., CARRIERO, N., CHANDRAN, S., AND
CHANG, S. 1985. Parallel programming in
Linda. In Proceedings of the International Con-
ference on Parallel Processing (St. Charles, Ill.,
Aug.). IEEE, 255-263.

GILMORE, P. 1979. Massive Parallel Processor
(MPP):/Phase One Final Report. Tech. Rep.
GER-16684, Goodyear Aeorospace Co., Akron.

GREENGARD, L., AND ROKHLIN, V. 1987. A fast al-
gorithm for particle simulations. J. Comput.
Phys. 73, 2 (Dec.), 325-348.

HALSTEAD, R. 1985. Multilisp: A language for con-
current symbolic computation. ACM Trans.
Program. Lang. Syst. 7, 4 (Oct.), 501-538.

HENDERSON, P. 1982. Purely functional operating
systems. In Functional Programming and Its
Applications, J. Darlington, P. Henderson, and
D. A. Turner, Eds. Cambridge Univ. Press, New
York, pp. 177-192. -

HILLIS, W. D., AND STEELE, G. L. 1986. Data par-
allel algorithms. Commun. ACM 29, 12 (Dec.),
1170-1183.

HOARE, C. A. R. 1974. Monitors: An operating sys-
tem structuring concept. Commun. ACM 17, 10
(Oct.), 549-557.

HOARE, C. A. R. 1978. Communicating sequential
processes. Commun. ACM 21,ll (Aug.), 666-677.

HUDAK, P. 1986. Parafunctional programming.
Computer 29,s (Aug.), 60-70

JORDAN, H. F. 1986. Structuring parallel algorithms
in an MIMD, shared memory environment. Par-
allel Comput. 3, 93-110.

CHEN, M. C. 1986. A parallel language and its com-
pilation to multiprocessor architectures or VLSI.
In Proceedings of the ACM Symposium on Prin-
ciples of Programming Languages (St. Petersburg,
Jan.). ACM, New York.

CHERITON, D. R., AND ZWAENPOEL, W. 1985.
Distributed process groups in the V Kernel. ACM
Trans. Comput. Syst. 3, 2 (May), 77-107.

DALLY, W. J. 1988. Object-oriented concurrent pro-
gramming in CST. In Proceedings of the 3rd
Conference on Hypercube Concurrent Computers
and Applications. (Pasadena, Jan, 1988) JPL/
Caltech, p. 33.

109-133.

JUL, E., LEVY, H., HUTCHINSON, N., AND BLACK, A.

KAHN, G. 1974. The semantics of a simple language
for parallel processing. In Proceedings of the IFIP

1988. Fine-grained mobility in the Emerald

Congress 74. North Holland, 471.
LAMPSON, B. W.,

system. ACM Trans. Comput. Syst. 6, 1 (Feb.),

AND REDELL, D. D. 1980.
Experience with processes and monitors in Mesa.
Commun. ACM 23,2 (Feb.), 105-117.

LEE, C. C., SKEDZIELEWSKI, S., AND FEO, J. 1988.
On the implementation of applicative languages
on shared-memory, MIMD multiprocessors. In
Proceedings of the ACMISIGPLAN Symposium
on Parallel Programming (New Haven, Aug.).
ACM, New York.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

How to Write Parallel Programs l 357

LELER, W. 1989. PIX, the latest NEWS. In Proceed-
ings of COMPCON Spring ‘89 (San Francisco,
Feb.). IEEE.

MARSLAND, T. A., AND CAMPBELL, M. 1982.
Parallel search of strongly ordered game trees.
ACM Comput. Suru. 14, 4 (Dec.), 533-552.

MATSUOKA, S., AND KAWAI, S. 1988. Using tuple
space communication in distributed object-
oriented languages. In Proceedings of OOPSLA
‘88 (San Diego, Sept. 25-30), 276-284.

MAY, M. D. 1983. Occam. SIGPLAN Not. (ACM)
18, 4 (April), 69-79.

MULLENDER, S. J., AND TANENBAUM, A. S. 1986.
The design of a capability-based distributed op-
erating system. Comput. J. 29, 4 (Mar.), 289-300.

MUSGRAVE, F. K., AND MANDELBROT, B. B. 1989.
Natura ex machina. IEEE Comput. Graph. Appl.
9, 1 (Jan.), 4-7.

NAREM, J. E. 1988. DB: A parallel news database in
Linda. Tech. memo, Dept. of Computer Science,
Yale Univ., New Haven, Conn., Aug.

NIKHIL, R., PINGALI, K., AND ARVIND. 1986. Id
Nouveau. Memo 265, Computation Structures
Group, MIT, Cambridge, Mass. 3

OLSON, T. J. 1986. Finding lines with the Hough
Transform on the BBN Butterfly parallel proces-

sor. Butterfly Proj: Rep. 10, Dept. of Comput.
Science, Univ. of Rochester, New York, Sept.

RINGWOOD, G. A. 1988. Parlog and the dining
logicians. Commun. ACM 31, 1 (Jan.), 10-25.

ROTH, P. 1985. Portnoy’s Complaint. Fawcett Crest,
p. 309 (first published by Random House, New
York 1967).

SEITZ, C. 1985. The cosmic cube. Commun. ACM 28,
1 (1985), 22-33.

SHAPIRO, E., ED. 1987. Concurrent Prolog Collected
Papers. Vols. 1 and 2. MIT Press, New York.

WHITESIDE, R. A., AND LEICHTER, J. S. 1988. Using
Linda for supercomputing on a local area
network. In Proceedings of Supercomputing,
(Orlando, Fla., Nov.), 192-199.

WIRTH, N. 1977. Modula: A language for modular
multiprogramming. Softw. Pratt. Exp. 7, 3-35.

Xv, A. S. 1988. A fault-tolerant network kernel for
Linda. Tech. Rep. MIT/LCS/TR-424, Labora-
tory for Computer Science, MIT, Cambridge,
Mass., Aug.

YOUNG, M., ET AL. 1987. The duality of memory and
communication in the implementation of a mul-
tiprocessor operating system. In Proceedings of
the 1 lth ACM Symposium on Operating Systems
Principles (Austin, Tex., Nov.). ACM, New York,
pp. 63-76.

Received May 1988; final revision accepted April 1989.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

