
Applications Experience with Linda

Nicholas Carrier0 and David Gelernter
Department of Computer Science

Yale University

Abstract

We describe three experiments using C-

Linda to write parallel codes. The first in-

volves assessing the similarity of DNA se-

quences. The results demonstrate Linda’s
flexibility-Linda solutions are presented

that work well at two quite different lev-

els of granularity. The second uses a prime
finder to illustrate a class of algorithms that
do not (easily) submit to automatic paral-
lelizers, but can be parallelized in straight-
forward fashion using C-Linda. The fi-
nal experiment describes the process lattice
model, an “inherently” parallel application
that is naturally conceived as multiple in-
teracting processes. Taken together, the ex-
perience described here bolsters our claim
that Linda can bridge the gap between the
growing collection of parallel hardware and
users eager to exploit parallelism.

This work is supported by the NSF un-
der grants DCR-8601920 and DCR-865’7615
and by the ONR under grant N00014-86-K-
0310. We are grateful to Argonne National
Labs for providing access to a Sequent Sym-

metry.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage.

the ACM copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise. or to republish. requires a fee and/

or specific permission.

@ 1988 ACM O-8979 l-276-4/0007/0 173 $1.50

1 Introduction

There is a gap in the current arsenal of

parallel programming systems: parallel ma-

chines but not high-level parallel languages

are widely available. A “parallel lan-

guage” for our purposes is a system that
supports parallelism with constructs recog-
nized by a compiler (not merely with a li-
brary of system calls); it is “widely avail-
able” if it has been implemented on ma-
chines produced by many manufacturers,
and preferably on several different classes
of parallel machines. “High-level” is subjec-
tive, but a high-level language should sup-
port many programming paradigms con-
veniently (but with reasonable efficiency).
Instead, currently-available software falls
mainly into three classes. Academic re-
search has concentrated on parallelizing
compilers. The manufacturers are mainly
interested in proprietary (hence machine-
specific and not widely available) languages
or system-call libraries. Sophisticated users
have in some cases developed portable par-
allel languages, but in most cases they are

intentionally restricted in the sorts of paral-
lelism they can handle; they tend to center
on parallel DO-loops.

A good deal has been accomplished in all
of these efforts, but in our view they don’t

add up to a satisfying whole. Restructur-
ing compilers are fine, except for the cases
in which they (a) don’t work well enough,

173

(b) don’t work at all or (c) are irrelevant,
because the algorithm in hand is explicitly
parallel. (We give examples of (b) and (c)
further on.) Systems in the third category
(e.g. Jordan’s Force[Jor86]) are clearly use-
ful within the domains and on the machines
for which they are appropriate, but it’s easy
to find programming tasks that they can’t
handle (because they simply weren’t de-
signed to). We see little redeeming social
value in the second category. The world-
view in which each manufacturer promotes
its private stable of locally-optimum lan-
guages, forcing users to translate their pro-
grams (in some cases even redesign their al-
gorithms) whenever they switch machines,

has been in decline since around 1960.

We have argued for some time that

Linda is a good candidate for filling the
gap. Linda is a high-level (by our stan-
dards) parallel language for MIMD ma-

chines and LANs; it exists in two version,

a C and a Fortran dialect; it is available

quite widely: we have built systems for

the Encore, Sequent and Alliant shared-

memory machines, the Intel iPSC hyper-
cube, VAX/VMS LAN, Bell Labs S/Net
and other machines. Several manufacturers

are working independently on implementa-

tions for their own equipment; these efforts

mainly involve parallel workstations. Linda

is a research project, and of the systems
named, only the C-based dialect on the En-

core and Sequent machines has been dis-
tributed to “alien” sites (sites not involved
in collaborative research with our group).
But our growing (if still preliminary) ex-
perience with the system strengthens our
conviction that Linda works.

This paper is devoted specifically to pro-
gramming experiments. The system and

its implementations have been described at
length elsewhere [e.g. GB82, Ge185, CGL86,
CG85, ACG86, Car871 and a recent paper

specifically addresses the question of porta-
bility [BjCGL88]. Many sorts of program-
ming experiments have been conducted us-
ing Linda. The three to be described
in this paper are chosen to make spe-
cific points. The first involves a prob-
lem of significance to geneticists, DNA-
sequence comparison. When new sequences
are discovered, it is of interest to determine
which previously-known sequences they re-
semble, where “resemblance” is a qualita-
tive measure that can be approximated us-
ing string-matching-like algorithms. We
discuss this experiment because it demon-
strates the need for fEez&Eity in a par-

allel language: an individual sequence-to-

sequence comparison can be parallelized, or
we can run many sequential comparisons si-
multaneously, giving us a parallel search of

a large database. Each approach can be

useful, and a parallel language should work

in both cases.

The second and third experiments ad-
dress (among other points) the issue of par-

allel languages versus restructuring com-

pilers. The second involves a problem
posted to the COMP.ARCH bulletin board

on the ARPANET: an algorithm is pre-

sented which, it is argued, is characteris-

tic of a class that is immune to paralleliz-

ing or vectorizing compilers. We discuss an
explicitly-parallel Linda version that shows

excellent performance. The third experi-

mental system was conceived from the first
as a parallel structure: an heuristic monitor
for use in post-operative cardiac ICU’s was
designed as a lattice of increasingly-general
decision processes. Here Linda is impor-
tant because it is expressive: the prototype
would have been far more complicated as a
sequential program with a monolithic flow

of control; if and when the monitor (or a
similar program in another domain) grows
large enough to require more computing re-

174

sources than one processor can offer, paral-

lelism is on hand to provide speed as well

as expressivity.

The work of systems researchers is sig-

nificant only insofar as it’s useful to non-

systems-researchers. “Usefulness” can’t be

established quantitatively, and at any rate
experience with Linda is still fairly prelim-

inary. It’s nonetheless our intent in these
examples to argue that Linda is in fact a
useful tool right now within a variety of sig-

nificant domains. This argument will rest
on three contentions.

1.

2.

3.

Linda is being used to solve %eal prob-
lems “. Our first and third examples

were suggested by biologists and anes-
thesiologists respectively. In other pa-
pers we’ve discussed Linda programs
for matrix multiplication, the factor-
ization step of the Dongarra Lin-
pack benchmark [Don871 and travel-
ling salesman [BjCGL88]; other cur-
rent work involves a Linda ray-tracing
program for the display of fractal im-
ages (written by Ken Musgrave work-
ing with Benoit Mandelbrot at Yale),
and joint work by Robert Whiteside at
Sandia-Livermore and Jerry Leichter of
our group which has recently demon-
strated supercomputer performance1

using Linda on a LAN of VAX 8000-

class machines[WL88].

The Linda solutions to these problems
are easy to understand. We outline

the workings of our example problems.
The point is subjective, but readers
will judge for themselves.

The Linda solutions demonstrate real

speedup. Parallel-language perfor-

mance is sometimes (see e.g. [Tha88])

lIn the case of a parameter sensitivity experi-
ment, twice the performance of a Cray 1s.

described in terms of relative speedup:
how much faster is the n-node version

than the same program in the same
language running on a single node?

This question is interesting only if we

know the running time of a comparable

algorithm written in a conventional,
sequential language as well. Recod-

ing a sequential-language program in
a parallel language always introduces
overhead. Given an efficient system,

we recoup the overhead by running
on many processors, and we come out
ahead in absolute terms. Given an in-
efficient language, we never recoup the
overhead no matter how many proces-
sors we run on. We present “absolute
speedup” data by comparing the per-
formance of C-Linda programs to com-
parable sequential programs in C.

The data to be presented center for the
most part on the C-Linda system for the
Encore Multimax. These programs would
port trivially to Linda systems on other par-
allel computers. Their performance would
be (in our experience) very similar on other
shared-memory machines (for example the
Sequent Balance or Symmetry or the VU
Tadpole), allowing for differences in abso-
lute processor speed. When we port Linda
code to disjoint-memory machines, the per-

formance of non-communication-intensive

programs is relatively unaffected. (We
give some figures comparing Linda on the
Encore and on the Intel iPSC hypercube

for one example.) But of course Linda

can’t alter the intrinsic speed of the in-
terconnect, thus communication-intensive
programs don’t do as well on hyper-
cubes as they do on shared-memory ma-

chines. The next generation of disjoint-

memory machines will show a major re-
duction in network delays, and Linda pro-
grams should then perform more consis-

175

tently across architectural classes. (We
will be running tests in coming months on
two next-generation disjoint-memory ma-
chines, Intel’s iPSC/2 and the Linda Ma-
chine[ACGK88] being built by Venkatesh
Krishnaswamy and Sid Ahuja at Bell Labs).
Much more data on portability and per-
formance across architectures appears in

[BjCGL88].

Because Linda has been discussed at
length in the literature, we relegate a brief
description to the appendix.

2 DNA Sequencing

DNA-sequencing is typical of a problem

that requires flexibility in a parallel lan-

guage. Parallelism can enter at either of two

levels. A single sequence-to-sequence com-
parison can be time-consuming, and might

accordingly be parallelized; when compar-

ing against a large database of sequences,
however, it may well be more efficient to
parallelize not a single comparison but the

entire database search-to perform many
sequential comparisons simultaneously.

A parallel sequence comparison poten-
tially involves fairly fine-grained paral-
lelism, of the sort that is readily expressed
in (for example) data-flow languages ex-
tended ,with I-structures [NPA86] or sys-
tolic systems and so forth. The parallel
database search is quite different. An ef-
ficient way to conduct this search is to cre-
ate the optimal number of search-processes
given available hardware; then to pass out
sequences to searchers dynamically (com-
parisons take varying amounts of time), and
have the searchers return the results to a
master process that compiles them, remem-
bering the best result so far. Here, fine-

grained techniques are irrelevant; a differ-

ent kind of technique is required. Linda can
handle both cases efficiently.

Figure 1 shows the performance of a

Linda program running on the Encore
Multimax and Sequent Symmetry, shared-
memory parallel machines with NS-32332
and Intel 80386 processors respectively.
This program represents a parallelized ver-
sion of a single sequence-to-sequence com-
parison. The problem to be solved is an
assessment of the degree of similarity be-
tween two DNA sequences. The assessment
must be sensitive both to insertions, dele-

tions and mutations.2 The general method

can be described as follows. Let s and t

be two sequences. Construct a “similarity”

matrix H, where H[i, j] is the maximum
similarity of all subsequences of s ending

at index i as compared against all subse-

quences oft ending at j. H[i,j] is computed

by taking the maximum of three terms:

1. H[i - 1,j - l] plus a weight that de-

pends on s[;] and t[j]. Intuitively this
corresponds to lengthening the match.

2. Consider all H[i’, j] for i’ < i. These

values modified by a suitable penalty
function give similarity values conse-
quent to the deletion of various lengths
in t. Choose the maximum.

3. Similarly consider all H[i, j’] for j’ < j.

When Ii is complete, its maximum entry
is the similarity of the two sequences. For
an arbitrary penalty function, terms 2 and
3 may require O(n) time, leading to O(n3)
time for the entire algorithm. But if the
penalty functions are simple-if they are
linear in the length of the deletion, say-
then terms 2 and 3 can be evaluated in
constant time, leading to O(n2) time overall
(see [Got82]). We used an O(n2) algorithm.

2for example, acgtcgZ is the same sequence as acg-
tacgt, with the second a deleted; acgtacgt is a mu-
tated version of acgtccgt.

176

450

-------------------------------------e--m------(

- Length 3390 --

__----. Length 1182 --

0 -- Encore Multrmax
---------------0

0 -- Sequent Symmetry

150

100

’ 1 2 3 4 ----- 5 6 7 8 9 10 11 12 13 14
Number of WorKers

Figure 1: Parallel version of the Gotoh sequence comparison algorithm. The curve shows
absolute running times (not speedup). The dashed lines represent running times for the
sequential algorithm coded in C and running on one node: given two workers, Linda is
faster than C in all cases, and Linda performance continues to improve as we add workers.
Note that total processes is one more than total workers: 3 processes (a master and 2
workers) are active in the 2-worker version and so on.

177

The parallel Linda version works as fol-
lows. Careful study of the data dependen-
cies leads to the observation that a counter-
diagonal of H can be computed as soon
as the previous counter-diagonal is com-
plete. The same observation holds if we

deal with sub-blocks rather than individ-
ual elements of H: once the upper-leftmost
block is computed, the blocks directly to
the right and directly beneath can be com-
puted, and so on. We can parallelize the

algorithm by defining as a task the compu-

tation of one horizontal strip of blocks of
the matrix. These task will have a stag-

gered start (first block (1,l)‘s strip and
then block (2,l) ‘s and then (3,l)‘s and so

on), which means that this algorithm can-
not achieve ideal speedup (some processors

will be idle during the staggered start phase

and also during a similar phase at termina-

tion). We can control this cost by reducing

the block size, but only at the cost of ad-
di tional communication (the more blocks,

the more data to be communicated across

block boundaries). The results show that

good performance is possible notwithstand-
ing. Linda’s tuple-space operations come
into play when (1) the initial tasks are dis-
tributed, (2) b oundary values are communi-
cated between workers responsible for adja-
cent strips, and (3) each worker returns its
best value to the master at termination. In
each case, the requisite data is dropped into
tuple space via Linda’s out operation and
retrieved using in-a maximally-simple use
of Linda.

Figure 2 shows the performance of a dif-
ferent Linda program, the parallel database

search routine that conducts many sequen-

tial searches simultaneously; results are
shown for Linda running on the Encore
Multimax and the Intel iPSC hypercube
multiprocessors3 The program is simple:

3These results reflect the O(n3) algorithm instead

worker processes are set up; the target se-
quence is dropped into tuple space via out
and read by each worker using the Linda
rd operation; the sequences found in the
database are outed, and workers repeat-
edly grab a sequence, compare it with the

target, out the result and repeat until the
database is empty. A master process picks
up these result tuples and reports the best
overall. Figure 2 shows performance on
a search involving a small comparison set

of 256 sequences, but performance is sim-

ilar when we run comparisons against an
actual sequence database (the GENBANK

database). To coordinate a search against
a large database, the master process uses

a “low watermark” approach. It outs an

initial batch of sequence tuples, then waits

until most of the initial batch has been

searched-against (by tallying incoming re-

sult tuples). When the number of remain-

ing sequence tuples falls below the low wa-

termark, another batch is outed, and so on

until completion.

3 Primes

The examples above would have posed
an interesting challenge to a restructuring
compiler (or equivalently, to a functional-
programming system in which the compiler

or run-time system takes charge of paral-
lelization). In the second case, for example,
the system would have been been required
to make a reasonable decision about the dis-
tribution of the original sequence, and then

of the improved O(n2) version. Performance of the
Encore and the iPSC will also be roughly compara-
ble using the faster algorithm in searching GenBank
instead of the test database. The sequences in the
test database are 64 elements long; the average se-
quence in GenBank is on the order of 1000 elements,
which makes each task compute-intensive and the
difference in communication speed between the two
machines insignificant.

178

1000

:
v,

Fz
- 500

+

DNR sequencing
256 sequences of length 64

I I I I

e -- Encof e

1 -- Intel

I I I I I I I I

O 0 10 20

Number- of WorKer-s

30

Figure 2: A comparison of DNA sequencing on two different multiprocessors. The sequences
were 64 bases long, and 256 sequences were compared against the target.

179

to have designed and implemented a low-
watermark scheme or the equivalent. More
generally, it would have been required to
decide whether to parallelize a single com-
parison or to conduct a parallel database

search: the comparison algorithm itself is,

of course, the same in either case. But leav-

ing this question aside, consider a case in

which parallelizing compilers are genuinely

hard-pressed.

The following extract is from a note

posted to an ARPANET bulletin board by

Martin Fouts of NASA Ames:

As an example of a class of al-
gorithms which is difficult to vec-

torize or parallelize, let me pull
out the ancient prime finder algo-
rithm: pgure 33. Although there
are different algorithms for find-
ing primes, I use this one to il-
lustrate a class of problems which

comes up frequently in my work.
There exists some set from which
must be drawn a subset. There
exists a rule for ordering the set
and another rule for determining
if an element is a member of the
subset [. ..] None of the vectoriz-
ing compilers that I have access to
will attempt to vectorize this algo-
rithm. The Alliant automatic par-
allelizer will not attempt to paral-
lelize it. Most of the mechanisms
I have tried to handcraft a vec-
tor or parallel variant which re-
mains true to the previous para-
graph have added sufficient extra
work to the algorithm that it runs
more slowly as the number of pro-

cessors increase.

The Linda version (which, Fouts agrees,

is faithful to the sequential algorithm, al-

though to be fair our code is substan-

IPRIME(1) = 1

IPRIME(2) = 2

IPRIME(3) = 3

NPRIME = 3

DO 50 N = 5, MAXN, 2

DO 10 I = 3, NPRIME

IQ = N / IPRIME(1)

IR = N - (IPRIME(I

+ *

IF (IR .EQ.

IF (IQ .LT.

+ GO TO 20

10 CONTINUE

IQ)
0) GO TO 40

IPRIME(1) >

20 NPRIME = NPRIME + 1

IPRIME(NPRIME) = N

IF (NPRIME .GE. MAXP)

+ GO TO 60

40 CONTINUE

50

60

CONTINUE

CONTINUE

Figure 3:

tially longer*) again
model.

Prime finder

uses the master-worker

The results in figure 4 show timings for
locating the first 50,000 primes in the range
1 to 106. A task in our code consists of
checking the integers between n and rz +
ChunkSize for primality. Workers perform

*“Faithful” in a particular, well-defined sense:
what was important to Fouts, and captured by the
Linda implementation, was the fact that some set
had to be searched in order, and a subset selected
in order. It’s easy to imagine a parallel prime-finder
that examines each integer independently of the rest,
but such an approach is blatantly wasteful: in deter-
mining whether j is prime, we can obviously make
use of the fact that we know all previous primes
through the square root of j. The Linda program al-
lows many segments of the search to be conducted in
parallel, but starts the sub-searches in order; later-
starting searches rely on the primes discovered by
earlier ones. The approach is discussed in detail in
[CG88].

180

------- i

80

0 -- Encore Multlmax

--& 70 0 -- Sequent Symmetry

0 --------------------- -. -0

10

0 I I I I I I I I
1 2 3 4 5 6 7 8 9

Number * of WorKers

Figure 4: Parallel prime finder. Time to find the first 50000 primes in the range 1 to 100000.
The Chunk&e was 200. Dashed line is time for sequential C code.

181

each task by executing code equivalent to

the DO 50 loop in the figure. Tasks are

distributed dynamically: a worker grabs a

task-descriptor using in, then immediately
generates a new task-descriptor (i.e., “check
the next chunk of integers after mine”) for

some other worker to pick up. It pro-
ceeds to check its own chunk, reports the

new primes to the master using out, and
grabs another task. The master uses tu-
ple content-addressing to pick up the re-

sults in order (in essence, the workers write
a distributed (FIFO) stream of tuples, and
the master reads it: this is a simple dis-
tributed data-structure technique discussed
in [CGL86]). The master uses the incoming
results to construct (using out) a table of
primes in tuple-space (another simple dis-
tributed data structure, also dependent on
tuple content-addressing). A worker con-
sults the table (using rd) as necessary in

extending its sieve.

Perhaps the problem was less difficult
to solve than Fouts thought-or at any
rate, was less difficult given an environ-
ment that provided suitable abstractions
(efficiently implemented) to support paral-
lelization. But Fouts wasn’t alone in his
initial assessment. A few days after he

posted his note (and we got our Linda ver-
sion running), the following comment was
posted to the same bulletin board: “The
algorithm presented by [Fouts] is not paral-

lizable [sic] .”

4 Process Lattices

Consider the following problem: given a
mass of incoming data, we need a system

that will perform two related but separate

tasks. (1) It will act as a kind of heuris-

tic database, ready to accept user queries

either about the status of a data-stream or

the likelihood of some more complex phe-

nomenon given the current state. (2) It will

act as a monitor and alarm system, posting
notices when significant state-changes oc-

cur. In determining the likelihood of more
complex states, the system might use quan-
titative tests, heuristic decision procedures

(as in rule-based systems, for example), or
any mix of the two. Concretely, a first
prototype monitored simulated automobile-
traffic flows; a large experiment now un-
derway deals with post-operative cardiac
patients. Both programs were written by
Michael Factor of our group at Yale.

It’s convenient to imagine such a pro-
gram as a so-called process-lattice. Each
process in the bottom rung of the hierar-
chy is wired directly to an external sen-
sor, and performs initial data processing
and filtering. Processes at higher levels in
the lattice are responsible for more complex
states. In the current system, for exam-
ple, low-level nodes connect to (currently
simulated) blood-loss and blood-gain de-
vices; they and other bottom-rung nodes
converse with a higher-level node that cal-
culates total fluid volume, which communi-
cates with a higher-level node monitoring
the likelihood of hypovolemia (a particular
clinically-significant state) and so on.

More precisely, we can describe the pro-

cess lattice as follows. The lattice contains

a collection of nodes, and each one defines
a mapping from a set of input states (the

states of the inferior nodes) to an output
state (its own state). We posit that a node’s

state always reflect (or be in transition to)

the value yielded by applying its own state
function to the current values of its input

states and its own state. It follows that,
whenever some value changes, the effect of

the change ripples upwards through the lat-

tice. A node’s state may be “undefined”

as well, or may be “pending”, which is an
intermediate condition; each node’s state

182

function determines explicitly when the lo-
cal state value is defined, undefined and
pending. Concretely, a value will be defined
when “enough” inferior values are defined
to allow the state function to be computed.
Nodes with the null state function (depend-
ing on no inferiors, relying on externally-
supplied values) have “undefined” state in
the absence of an external data signal. Sup-
pose, though, that some important inferior
values (values that are highly weighted in

the local decision procedure) are available,

but others are missing; the local decision
procedure might then decide that it ought to
be defined, although it lacks sufficient data

to compute a state; so it becomes “pend-

ing”. A “pending” node reflects a request-
for-data downwards to all undefined inferi-

ors. They become “pending” in turn, and
reflect the request downward again. Thus
the effect of a data-request filters downward

as data values filter upwards; as requests fil-
ter downward, they merely notify all “state
undefined” nodes along the way that data
is wanted. If we equip bottom-rank nodes
with warning lights, a flashing warning light
means “enter data”. The data filter up-
wards, and eventually all undefined states
become defined.

We supply two types of “logic probe”
with the system, an “inject value” probe
and a “read value” probe. We can touch
any node with an “inject value” probe,
thereby setting the state of the node we
touch to any value we choose. In the de-
fault configuration described above, then,
each node in the bottom rank has a null
state function; instead, each bottom-rank
node has a permanently-attached inject-
value probe through which we pump new
values into the system. We can read any

node’s current state by touching it with a
“read-value” probe. If the current state of
the node we touch is undefined, touching

it with a read-probe changes its state to
“pending”, and the query propagates down-
ward to each of the node’s inferiors. Even-
tually new data values arrive and a query-
response is computed.

It’s easy to build such a program in
Linda. In outline, the implementation
works as follows: each lattice node is im-
plemented by a separate process; each node
stores its current state in a tuple; a node

that updates its state (by removing its

state tuple via in, and reinstalling an up-
dated version via out) notifies all interested
parties by sending signals along message

streams. Message streams are implemented

as sequences of numbered tuples; the tech-

nique is discussed in [CG88]. When node Q
is informed that “node N has just uidated

its state”, Q uses rd to read N’s state tuple
directly.

This program architecture might in the
abstract be implemented on top of a
message-passing or a concurrent object sys-
tem; Linda isn’t the only possible imple-
mentation vehicle. But Linda seems like
a good choice. The salient point is that
Linda allows state information to be stored
in tuple space, where it is directly acces-
sible to any interested party. Any num-
ber of concurrent processes may read any
node’s state directly, and simultaneously; a
state is inaccessible only when the state tu-
ple has been (temporarily) withdrawn for
updating. Ease of access to state data
is important to a program architecture in
which many processes may need access to
this data, and new processes may dynami-
cally and unpredictably seek access as the
program runs (particularly when we at-
t ach probes). Storing each node’s state
in a local data structure, and shipping it

out explicitly to each interested party (a
message passing solution), or encapsulat-
ing state data inside a monitor, and deal-

183

ing with a monitor’s cumbersome synchro-
nization mechanisms to insure concurrent
access to readers, exclusive access to writ-
ers, and correct delivery of “update” sig-
nals along inter-node message streams (as
in a monitor-based concurrent-object lan-
guage), seem like more complicated and less
attractive strategies.

The ICU monitor problem was posed
by anesthesiologists at the Yale Medical
School; Dr. Perry Miller (director of the
Medical Informatics program at Yale) and
Dr. Stanley Rosenbaum are collaborators
in this research. The current system (di-
agrammed in figure 5) is too incomplete
to. be clinically testable. It uses a process
lattice with 38 nodes; our domain experts
estimate that roughly four times as many
would be required in order to cover 95% of

the relevant major diagnoses. Our goals
in the project extend beyond the proto-
type, though. The experts are pleased with
the prototype’s performance: a recent test

involving five one-hour sets of simulation

data produced “correct” and “reasonable”

behavior. Development work aimed ulti-
mately at a clinically-testable system con-
tinues.

5 Conclusions

It’s clear that we can parallelize interest-

ing applications using Linda. The trans-

formation is by no means uniformly sim-
ple to accomplish; some thought may be
involved, which is precisely why Linda is
necessary and (as in the primes-generating
example) compilers can’t necessarily be re-
lied on, at least for now. On the other

hand, although the transformation from se-
quential to parallel may require some think-

ing, it rarely seems to require a frightening

amount[CG88]. We know of nothing that
should prevent any competent programmer

from learning how to do it. Of course there
are also cases in which no transformation
is required because, as in the last example,
the program structure involved is conceived
in parallel from the start.

The results we’ve presented deal with
small parallel machines only, which repre-
sents our experience to date. We can’t
prove, yet, that Linda will work well on
large multi-computers, but we suspect that
it will, and are working on kernels for larger
machines now. (The Linda Machine is de-
signed to scale upwards to roughly a thou-
sand nodes. For the time being, a thou-
sand powerful nodes will be plenty for our
purposes.) A replicated-worker program in
Linda looks the same whether there are 10
or 1000 workers (not that its performance
is guaranteed to scale up, but certainly the
design of such a program poses no unsolved
problems); process-lattices involving thou-
sands of decision nodes are also easy to
imagine, and will be no harder to build than

our current smaller versions.

Appendix

The Linda model is a memory model. Linda

memory (called tuple space) consists of a
collection of logical tuples. There are two

kinds of tuples waltzing around inside it.

Process tuples are under active evaluation;

data tuples are passive. To build a Linda

program, we ordinarily drop one process tu-
ple into tuple space; it creates other process

tuples. The process tuples (which are all ex-
ecuting simultaneously) exchange data by
generating, reading and consuming data tu-
ples. A process tuple that is finished execut-
ing turns into a data tuple, indistinguish-
able from other data tuples.

One Linda programming paradigm we
rely on involves distributed data structures
and a bunch of identical worker processes

184

Figure 5: Process Lattice for an ICU Monitor.

185

(or several bunches of different kinds of pro- s, and the executing process continues. If
cesses) crawling over the data structures si- no matching t is available when in(s) exe-
multaneously. We use the term distributed cutes, the executing process suspends until
data structure [CGLS6] to refer to a data one is, then proceeds as before. If many
structure that is directly accessible to many matching t’s are available, one is chosen ar-
processes simultaneously. Any datum sit- bitrarily. rd(s) is the same as in(s), with
ting in a Linda tuple space meets this cri- actuals assigned to formals as before, ex-
terion: it is directly accessible - via the cept that the matched tuple remains in TS.
Linda operations described below - to any Predicate versions of in and rd, inp and
process that currently occupies the same rdp, attempt to locate a matching tuple
tuple space. A single tuple constitutes a and return 0 if they fail; otherwise they

simple distributed data structure. We can
build more complicated multi-tuple struc-
tures (arrays or queues, for example) as

well.

It’s reasonable to describe a parallel com-

puter that supports Linda as an “uncon-
nect ion machine” . Programming models

like Occam [MS31 and the Connection Ma-

chine [Hi1851 tend to bind concurrent pro-

cesses tightly together (implicitly, through

the intermediation of a parallel data struc-

ture, in the case of the Connection Ma-

chine). In Linda the opposite is true. Linda
processes aspire to know as little about
each other ‘as possible. They never inter-
act with each other directly; they deal only
with tuple space. We believe that tightly-

bound collections of synchronous or quasi-
synchronous activities tend to force pro-
grammers to think in simultaneities. Great
simplification of the potentially formidable
task of parallel programming is possible,
we believe, if concurrent processes are so
loosely bound (so unconnected) that each
can be developed independently of the rest.

return I, and perform actual-to-formal as-
signment as described above. (If and only
if it can be shown that, irrespective of rela-
tive process speeds, a matching tuple must
have been added to TS before the execu-

tion of inp or rdp, and cannot have been

withdrawn by any other process until the
inp or rdp is complete, the predicate oper-

ations are guurunteed to find a matching tu-

ple.) eval (t) is the same as out(t) , except

that t is evaluated after rather than before

it enters tuple space; eval implicitly forks

a new process to perform the evaluation.

Eva1 has been implemented on the Encore
and Sequent but not yet on the other sys-
tems we discussed. (Where eval doesn’t

yet exist, programmers rely on the native
operating system to fork processes.)

Tuple space is an associative memory.
Tuples have no addresses; they are selected
by in or rd on the basis of any combination
of their field values. Thus the five-element
tuple (A, B, C, D, E) may be referenced as
“the five element tuple whose first element
is A,” or as “the five-element tuple whose
second element is B and fifth is E” or by
any other combination of element values.
To read a tuple using the first description,
we would write

rd(A, ?w, ?x, ?y, ?z)

(this makes A an actual parameter -it must
be matched against - and w through z for-
mals, whose values will be filled in from the

There are four basic tuple-space opera-
tions, out, in, rd and eval, and two vari-
ant forms, inp and rdp. out (t) causes tu-
ple t to be added to TS; the executing pro-
cess continues immediately. in (3 > causes
some tuple t that matches template s to
be withdrawn from TS; the values of the

actuals in t are assigned to the formals in

186

matched tuple). To read using the second
description we write

rd(?v, B, ?x, ?y, E)

and so on. Associative matching is in fact
more general than this: formal parameters
(or “wild cards”) may appear in tuples as
well as match-templates, and matching is

sensitive to the types as well as the values
of tuple fields.

References

[ACG86] S. Ahuja, N. Carrier0 and D. Gelern-
ter, “Linda and Friends,” IEEE Computer,
August 1986.

[ACGK88] S. Ahuja, N. Carriero, D. Gel-
ernter, and V. Krishnaswamy, “Matching
Language and Hardware for Parallel Com-
putation in the Linda Machine,” I&Z,!?
Trans. on Computers, August 1988.

[BjCGL88] R. Bjornson, N. Carriero, D.
Gelernter, and J. Leichter, “Linda,
the Portable Parallel,” Research Re-
port YALE/DCS/RR-520, Yale Univer-
sity, January 1988.

[Car871 N. Carriero, Implementing tuple space
machines. Doctoral Diss., Yale University,
1987.

[CG85] N. Carrier0 and D. Gelernter, “The
S/Net’s Linda Kernel,” in Proc. ACM.
Symp. Operating System Principles, De-
cember 1985 and (ACM Trans. Comp.
Sys. May 1986.

[CG88] N. Carrier0 and D. Gelernter, “How to
Write Parallel Programs: A Guide to The
Perplexed,” Research Report, Yale Univer-
sity, May 1988.

[CGL86] N. Carriero, D. Gelernter and J.
Leichter, “Distributed data structures in
Linda,” in Proc. ACM Symp. Principles
of Prog. Languages, January 1986.

[Don871 J. Dongarra, “Performance of Var-
ious Computers Using Standard Linear
Equations in a FORTRAN Environment,”
Technical Memorandum, Argonne Na-
tional Laboratory, 1987.

[GeI85] D. Gelernter, “Generative communi-
cation in Linda,” A CM Trans. Prog. Lung.
Sys. l(1985):80-112.

[GB82] D. Gelernter and A. Bernstein, “Dis-
tributed communication via global buffer,”
in Proc. ACM Symp. Principles of Dis-
tributed Computing, (Aug. 1982):10-18.

[Got821 0. Gotoh, “An improved algorithm
for matching biological sequences,” J. Mol.
Biol. 162(1982):705-708.

[H85] D. Hillis, The Connection Machine.
MIT Press (1985).

[Jor86] H.F. Jordan, “Structuring parallel al-
gorithms in an MIMD, shared mem-
ory environment ,” Parallel Computing
3(1986):93-110.

[May831 M.D. May, “Occam.” ACM SIG-
PLAN Notices, 18-4(1983):69-79.

[NPA86] R. Nikhil, K. Pingali and Arvind,
“ID Nouveau,” Technical Report 265
(MIT) 1986.

[Tha88] IEEE Software: Special issue on par-
allel programming, S,S. Thakkar, ed., Jan-
uary 1988.

[WL88] R. Whiteside and J. Leichter, “Us-
ing Linda for Supercomputing On a Lo-
cal Area Network.” Supecomputing ‘88, (to
appear).

187

