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Abstract 

We describe three experiments using C- 

Linda to write parallel codes. The first in- 

volves assessing the similarity of DNA se- 

quences. The results demonstrate Linda’s 
flexibility-Linda solutions are presented 

that work well at two quite different lev- 

els of granularity. The second uses a prime 
finder to illustrate a class of algorithms that 
do not (easily) submit to automatic paral- 
lelizers, but can be parallelized in straight- 
forward fashion using C-Linda. The fi- 
nal experiment describes the process lattice 
model, an “inherently” parallel application 
that is naturally conceived as multiple in- 
teracting processes. Taken together, the ex- 
perience described here bolsters our claim 
that Linda can bridge the gap between the 
growing collection of parallel hardware and 
users eager to exploit parallelism. 
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1 Introduction 

There is a gap in the current arsenal of 

parallel programming systems: parallel ma- 

chines but not high-level parallel languages 

are widely available. A “parallel lan- 

guage” for our purposes is a system that 
supports parallelism with constructs recog- 
nized by a compiler (not merely with a li- 
brary of system calls); it is “widely avail- 
able” if it has been implemented on ma- 
chines produced by many manufacturers, 
and preferably on several different classes 
of parallel machines. “High-level” is subjec- 
tive, but a high-level language should sup- 
port many programming paradigms con- 
veniently (but with reasonable efficiency). 
Instead, currently-available software falls 
mainly into three classes. Academic re- 
search has concentrated on parallelizing 
compilers. The manufacturers are mainly 
interested in proprietary (hence machine- 
specific and not widely available) languages 
or system-call libraries. Sophisticated users 
have in some cases developed portable par- 
allel languages, but in most cases they are 

intentionally restricted in the sorts of paral- 
lelism they can handle; they tend to center 
on parallel DO-loops. 

A good deal has been accomplished in all 
of these efforts, but in our view they don’t 

add up to a satisfying whole. Restructur- 
ing compilers are fine, except for the cases 
in which they (a) don’t work well enough, 
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(b) don’t work at all or (c) are irrelevant, 
because the algorithm in hand is explicitly 
parallel. (We give examples of (b) and (c) 
further on.) Systems in the third category 
(e.g. Jordan’s Force[Jor86]) are clearly use- 
ful within the domains and on the machines 
for which they are appropriate, but it’s easy 
to find programming tasks that they can’t 
handle (because they simply weren’t de- 
signed to). We see little redeeming social 
value in the second category. The world- 
view in which each manufacturer promotes 
its private stable of locally-optimum lan- 
guages, forcing users to translate their pro- 
grams (in some cases even redesign their al- 
gorithms) whenever they switch machines, 

has been in decline since around 1960. 

We have argued for some time that 

Linda is a good candidate for filling the 
gap. Linda is a high-level (by our stan- 
dards) parallel language for MIMD ma- 

chines and LANs; it exists in two version, 

a C and a Fortran dialect; it is available 

quite widely: we have built systems for 

the Encore, Sequent and Alliant shared- 

memory machines, the Intel iPSC hyper- 
cube, VAX/VMS LAN, Bell Labs S/Net 
and other machines. Several manufacturers 

are working independently on implementa- 

tions for their own equipment; these efforts 

mainly involve parallel workstations. Linda 

is a research project, and of the systems 
named, only the C-based dialect on the En- 

core and Sequent machines has been dis- 
tributed to “alien” sites (sites not involved 
in collaborative research with our group). 
But our growing (if still preliminary) ex- 
perience with the system strengthens our 
conviction that Linda works. 

This paper is devoted specifically to pro- 
gramming experiments. The system and 

its implementations have been described at 
length elsewhere [e.g. GB82, Ge185, CGL86, 
CG85, ACG86, Car871 and a recent paper 

specifically addresses the question of porta- 
bility [BjCGL88]. Many sorts of program- 
ming experiments have been conducted us- 
ing Linda. The three to be described 
in this paper are chosen to make spe- 
cific points. The first involves a prob- 
lem of significance to geneticists, DNA- 
sequence comparison. When new sequences 
are discovered, it is of interest to determine 
which previously-known sequences they re- 
semble, where “resemblance” is a qualita- 
tive measure that can be approximated us- 
ing string-matching-like algorithms. We 
discuss this experiment because it demon- 
strates the need for fEez&Eity in a par- 

allel language: an individual sequence-to- 

sequence comparison can be parallelized, or 
we can run many sequential comparisons si- 
multaneously, giving us a parallel search of 

a large database. Each approach can be 

useful, and a parallel language should work 

in both cases. 

The second and third experiments ad- 
dress (among other points) the issue of par- 

allel languages versus restructuring com- 

pilers. The second involves a problem 
posted to the COMP.ARCH bulletin board 

on the ARPANET: an algorithm is pre- 

sented which, it is argued, is characteris- 

tic of a class that is immune to paralleliz- 

ing or vectorizing compilers. We discuss an 
explicitly-parallel Linda version that shows 

excellent performance. The third experi- 

mental system was conceived from the first 
as a parallel structure: an heuristic monitor 
for use in post-operative cardiac ICU’s was 
designed as a lattice of increasingly-general 
decision processes. Here Linda is impor- 
tant because it is expressive: the prototype 
would have been far more complicated as a 
sequential program with a monolithic flow 

of control; if and when the monitor (or a 
similar program in another domain) grows 
large enough to require more computing re- 
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sources than one processor can offer, paral- 

lelism is on hand to provide speed as well 

as expressivity. 

The work of systems researchers is sig- 

nificant only insofar as it’s useful to non- 

systems-researchers. “Usefulness” can’t be 

established quantitatively, and at any rate 
experience with Linda is still fairly prelim- 

inary. It’s nonetheless our intent in these 
examples to argue that Linda is in fact a 
useful tool right now within a variety of sig- 

nificant domains. This argument will rest 
on three contentions. 

1. 

2. 

3. 

Linda is being used to solve %eal prob- 
lems “. Our first and third examples 

were suggested by biologists and anes- 
thesiologists respectively. In other pa- 
pers we’ve discussed Linda programs 
for matrix multiplication, the factor- 
ization step of the Dongarra Lin- 
pack benchmark [Don871 and travel- 
ling salesman [BjCGL88]; other cur- 
rent work involves a Linda ray-tracing 
program for the display of fractal im- 
ages (written by Ken Musgrave work- 
ing with Benoit Mandelbrot at Yale), 
and joint work by Robert Whiteside at 
Sandia-Livermore and Jerry Leichter of 
our group which has recently demon- 
strated supercomputer performance1 

using Linda on a LAN of VAX 8000- 

class machines[WL88]. 

The Linda solutions to these problems 
are easy to understand. We outline 

the workings of our example problems. 
The point is subjective, but readers 
will judge for themselves. 

The Linda solutions demonstrate real 

speedup. Parallel-language perfor- 

mance is sometimes (see e.g. [Tha88]) 

lIn the case of a parameter sensitivity experi- 
ment, twice the performance of a Cray 1s. 

described in terms of relative speedup: 
how much faster is the n-node version 

than the same program in the same 
language running on a single node? 

This question is interesting only if we 

know the running time of a comparable 

algorithm written in a conventional, 
sequential language as well. Recod- 

ing a sequential-language program in 
a parallel language always introduces 
overhead. Given an efficient system, 

we recoup the overhead by running 
on many processors, and we come out 
ahead in absolute terms. Given an in- 
efficient language, we never recoup the 
overhead no matter how many proces- 
sors we run on. We present “absolute 
speedup” data by comparing the per- 
formance of C-Linda programs to com- 
parable sequential programs in C. 

The data to be presented center for the 
most part on the C-Linda system for the 
Encore Multimax. These programs would 
port trivially to Linda systems on other par- 
allel computers. Their performance would 
be (in our experience) very similar on other 
shared-memory machines (for example the 
Sequent Balance or Symmetry or the VU 
Tadpole), allowing for differences in abso- 
lute processor speed. When we port Linda 
code to disjoint-memory machines, the per- 

formance of non-communication-intensive 

programs is relatively unaffected. (We 
give some figures comparing Linda on the 
Encore and on the Intel iPSC hypercube 

for one example.) But of course Linda 

can’t alter the intrinsic speed of the in- 
terconnect, thus communication-intensive 
programs don’t do as well on hyper- 
cubes as they do on shared-memory ma- 

chines. The next generation of disjoint- 

memory machines will show a major re- 
duction in network delays, and Linda pro- 
grams should then perform more consis- 
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tently across architectural classes. (We 
will be running tests in coming months on 
two next-generation disjoint-memory ma- 
chines, Intel’s iPSC/2 and the Linda Ma- 
chine[ACGK88] being built by Venkatesh 
Krishnaswamy and Sid Ahuja at Bell Labs). 
Much more data on portability and per- 
formance across architectures appears in 

[BjCGL88]. 

Because Linda has been discussed at 
length in the literature, we relegate a brief 
description to the appendix. 

2 DNA Sequencing 

DNA-sequencing is typical of a problem 

that requires flexibility in a parallel lan- 

guage. Parallelism can enter at either of two 

levels. A single sequence-to-sequence com- 
parison can be time-consuming, and might 

accordingly be parallelized; when compar- 

ing against a large database of sequences, 
however, it may well be more efficient to 
parallelize not a single comparison but the 

entire database search-to perform many 
sequential comparisons simultaneously. 

A parallel sequence comparison poten- 
tially involves fairly fine-grained paral- 
lelism, of the sort that is readily expressed 
in (for example) data-flow languages ex- 
tended ,with I-structures [NPA86] or sys- 
tolic systems and so forth. The parallel 
database search is quite different. An ef- 
ficient way to conduct this search is to cre- 
ate the optimal number of search-processes 
given available hardware; then to pass out 
sequences to searchers dynamically (com- 
parisons take varying amounts of time), and 
have the searchers return the results to a 
master process that compiles them, remem- 
bering the best result so far. Here, fine- 

grained techniques are irrelevant; a differ- 

ent kind of technique is required. Linda can 
handle both cases efficiently. 

Figure 1 shows the performance of a 

Linda program running on the Encore 
Multimax and Sequent Symmetry, shared- 
memory parallel machines with NS-32332 
and Intel 80386 processors respectively. 
This program represents a parallelized ver- 
sion of a single sequence-to-sequence com- 
parison. The problem to be solved is an 
assessment of the degree of similarity be- 
tween two DNA sequences. The assessment 
must be sensitive both to insertions, dele- 

tions and mutations.2 The general method 

can be described as follows. Let s and t 

be two sequences. Construct a “similarity” 

matrix H, where H[i, j] is the maximum 
similarity of all subsequences of s ending 

at index i as compared against all subse- 

quences oft ending at j. H[i,j] is computed 

by taking the maximum of three terms: 

1. H[i - 1,j - l] plus a weight that de- 

pends on s[;] and t[j]. Intuitively this 
corresponds to lengthening the match. 

2. Consider all H[i’, j] for i’ < i. These 

values modified by a suitable penalty 
function give similarity values conse- 
quent to the deletion of various lengths 
in t. Choose the maximum. 

3. Similarly consider all H[i, j’] for j’ < j. 

When Ii is complete, its maximum entry 
is the similarity of the two sequences. For 
an arbitrary penalty function, terms 2 and 
3 may require O(n) time, leading to O(n3) 
time for the entire algorithm. But if the 
penalty functions are simple-if they are 
linear in the length of the deletion, say- 
then terms 2 and 3 can be evaluated in 
constant time, leading to O(n2) time overall 
(see [Got82]). We used an O(n2) algorithm. 

2for example, acgtcgZ is the same sequence as acg- 
tacgt, with the second a deleted; acgtacgt is a mu- 
tated version of acgtccgt. 
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Figure 1: Parallel version of the Gotoh sequence comparison algorithm. The curve shows 
absolute running times (not speedup). The dashed lines represent running times for the 
sequential algorithm coded in C and running on one node: given two workers, Linda is 
faster than C in all cases, and Linda performance continues to improve as we add workers. 
Note that total processes is one more than total workers: 3 processes (a master and 2 
workers) are active in the 2-worker version and so on. 
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The parallel Linda version works as fol- 
lows. Careful study of the data dependen- 
cies leads to the observation that a counter- 
diagonal of H can be computed as soon 
as the previous counter-diagonal is com- 
plete. The same observation holds if we 

deal with sub-blocks rather than individ- 
ual elements of H: once the upper-leftmost 
block is computed, the blocks directly to 
the right and directly beneath can be com- 
puted, and so on. We can parallelize the 

algorithm by defining as a task the compu- 

tation of one horizontal strip of blocks of 
the matrix. These task will have a stag- 

gered start (first block (1,l)‘s strip and 
then block (2,l) ‘s and then (3,l)‘s and so 

on), which means that this algorithm can- 
not achieve ideal speedup (some processors 

will be idle during the staggered start phase 

and also during a similar phase at termina- 

tion). We can control this cost by reducing 

the block size, but only at the cost of ad- 
di tional communication (the more blocks, 

the more data to be communicated across 

block boundaries). The results show that 

good performance is possible notwithstand- 
ing. Linda’s tuple-space operations come 
into play when (1) the initial tasks are dis- 
tributed, (2) b oundary values are communi- 
cated between workers responsible for adja- 
cent strips, and (3) each worker returns its 
best value to the master at termination. In 
each case, the requisite data is dropped into 
tuple space via Linda’s out operation and 
retrieved using in-a maximally-simple use 
of Linda. 

Figure 2 shows the performance of a dif- 
ferent Linda program, the parallel database 

search routine that conducts many sequen- 

tial searches simultaneously; results are 
shown for Linda running on the Encore 
Multimax and the Intel iPSC hypercube 
multiprocessors3 The program is simple: 

3These results reflect the O(n3) algorithm instead 

worker processes are set up; the target se- 
quence is dropped into tuple space via out 
and read by each worker using the Linda 
rd operation; the sequences found in the 
database are outed, and workers repeat- 
edly grab a sequence, compare it with the 

target, out the result and repeat until the 
database is empty. A master process picks 
up these result tuples and reports the best 
overall. Figure 2 shows performance on 
a search involving a small comparison set 

of 256 sequences, but performance is sim- 

ilar when we run comparisons against an 
actual sequence database (the GENBANK 

database). To coordinate a search against 
a large database, the master process uses 

a “low watermark” approach. It outs an 

initial batch of sequence tuples, then waits 

until most of the initial batch has been 

searched-against (by tallying incoming re- 

sult tuples). When the number of remain- 

ing sequence tuples falls below the low wa- 

termark, another batch is outed, and so on 

until completion. 

3 Primes 

The examples above would have posed 
an interesting challenge to a restructuring 
compiler (or equivalently, to a functional- 
programming system in which the compiler 

or run-time system takes charge of paral- 
lelization). In the second case, for example, 
the system would have been been required 
to make a reasonable decision about the dis- 
tribution of the original sequence, and then 

of the improved O(n2) version. Performance of the 
Encore and the iPSC will also be roughly compara- 
ble using the faster algorithm in searching GenBank 
instead of the test database. The sequences in the 
test database are 64 elements long; the average se- 
quence in GenBank is on the order of 1000 elements, 
which makes each task compute-intensive and the 
difference in communication speed between the two 
machines insignificant. 

178 



1000 

: 
v, 

Fz 
- 500 

+ 

DNR sequencing 
256 sequences of length 64 

I I I I 

e -- Encof e 

1 -- Intel 

I I I I I I I I 

O 0 10 20 

Number- of WorKer-s 

30 

Figure 2: A comparison of DNA sequencing on two different multiprocessors. The sequences 
were 64 bases long, and 256 sequences were compared against the target. 
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to have designed and implemented a low- 
watermark scheme or the equivalent. More 
generally, it would have been required to 
decide whether to parallelize a single com- 
parison or to conduct a parallel database 

search: the comparison algorithm itself is, 

of course, the same in either case. But leav- 

ing this question aside, consider a case in 

which parallelizing compilers are genuinely 

hard-pressed. 

The following extract is from a note 

posted to an ARPANET bulletin board by 

Martin Fouts of NASA Ames: 

As an example of a class of al- 
gorithms which is difficult to vec- 

torize or parallelize, let me pull 
out the ancient prime finder algo- 
rithm: pgure 33. Although there 
are different algorithms for find- 
ing primes, I use this one to il- 
lustrate a class of problems which 

comes up frequently in my work. 
There exists some set from which 
must be drawn a subset. There 
exists a rule for ordering the set 
and another rule for determining 
if an element is a member of the 
subset [. ..] None of the vectoriz- 
ing compilers that I have access to 
will attempt to vectorize this algo- 
rithm. The Alliant automatic par- 
allelizer will not attempt to paral- 
lelize it. Most of the mechanisms 
I have tried to handcraft a vec- 
tor or parallel variant which re- 
mains true to the previous para- 
graph have added sufficient extra 
work to the algorithm that it runs 
more slowly as the number of pro- 

cessors increase. 

The Linda version (which, Fouts agrees, 

is faithful to the sequential algorithm, al- 

though to be fair our code is substan- 

IPRIME(1) = 1 

IPRIME(2) = 2 

IPRIME(3) = 3 

NPRIME = 3 

DO 50 N = 5, MAXN, 2 

DO 10 I = 3, NPRIME 

IQ = N / IPRIME(1) 

IR = N - (IPRIME(I 

+ * 

IF (IR .EQ. 

IF (IQ .LT. 

+ GO TO 20 

10 CONTINUE 

IQ) 
0) GO TO 40 

IPRIME(1) > 

20 NPRIME = NPRIME + 1 

IPRIME(NPRIME) = N 

IF (NPRIME .GE. MAXP) 

+ GO TO 60 

40 CONTINUE 

50 

60 

CONTINUE 

CONTINUE 

Figure 3: 

tially longer*) again 
model. 

Prime finder 

uses the master-worker 

The results in figure 4 show timings for 
locating the first 50,000 primes in the range 
1 to 106. A task in our code consists of 
checking the integers between n and rz + 
ChunkSize for primality. Workers perform 

*“Faithful” in a particular, well-defined sense: 
what was important to Fouts, and captured by the 
Linda implementation, was the fact that some set 
had to be searched in order, and a subset selected 
in order. It’s easy to imagine a parallel prime-finder 
that examines each integer independently of the rest, 
but such an approach is blatantly wasteful: in deter- 
mining whether j is prime, we can obviously make 
use of the fact that we know all previous primes 
through the square root of j. The Linda program al- 
lows many segments of the search to be conducted in 
parallel, but starts the sub-searches in order; later- 
starting searches rely on the primes discovered by 
earlier ones. The approach is discussed in detail in 
[CG88]. 
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Figure 4: Parallel prime finder. Time to find the first 50000 primes in the range 1 to 100000. 
The Chunk&e was 200. Dashed line is time for sequential C code. 
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each task by executing code equivalent to 

the DO 50 loop in the figure. Tasks are 

distributed dynamically: a worker grabs a 

task-descriptor using in, then immediately 
generates a new task-descriptor (i.e., “check 
the next chunk of integers after mine”) for 

some other worker to pick up. It pro- 
ceeds to check its own chunk, reports the 

new primes to the master using out, and 
grabs another task. The master uses tu- 
ple content-addressing to pick up the re- 

sults in order (in essence, the workers write 
a distributed (FIFO) stream of tuples, and 
the master reads it: this is a simple dis- 
tributed data-structure technique discussed 
in [CGL86]). The master uses the incoming 
results to construct (using out) a table of 
primes in tuple-space (another simple dis- 
tributed data structure, also dependent on 
tuple content-addressing). A worker con- 
sults the table (using rd) as necessary in 

extending its sieve. 

Perhaps the problem was less difficult 
to solve than Fouts thought-or at any 
rate, was less difficult given an environ- 
ment that provided suitable abstractions 
(efficiently implemented) to support paral- 
lelization. But Fouts wasn’t alone in his 
initial assessment. A few days after he 

posted his note (and we got our Linda ver- 
sion running), the following comment was 
posted to the same bulletin board: “The 
algorithm presented by [Fouts] is not paral- 

lizable [sic] .” 

4 Process Lattices 

Consider the following problem: given a 
mass of incoming data, we need a system 

that will perform two related but separate 

tasks. (1) It will act as a kind of heuris- 

tic database, ready to accept user queries 

either about the status of a data-stream or 

the likelihood of some more complex phe- 

nomenon given the current state. (2) It will 

act as a monitor and alarm system, posting 
notices when significant state-changes oc- 

cur. In determining the likelihood of more 
complex states, the system might use quan- 
titative tests, heuristic decision procedures 

(as in rule-based systems, for example), or 
any mix of the two. Concretely, a first 
prototype monitored simulated automobile- 
traffic flows; a large experiment now un- 
derway deals with post-operative cardiac 
patients. Both programs were written by 
Michael Factor of our group at Yale. 

It’s convenient to imagine such a pro- 
gram as a so-called process-lattice. Each 
process in the bottom rung of the hierar- 
chy is wired directly to an external sen- 
sor, and performs initial data processing 
and filtering. Processes at higher levels in 
the lattice are responsible for more complex 
states. In the current system, for exam- 
ple, low-level nodes connect to (currently 
simulated) blood-loss and blood-gain de- 
vices; they and other bottom-rung nodes 
converse with a higher-level node that cal- 
culates total fluid volume, which communi- 
cates with a higher-level node monitoring 
the likelihood of hypovolemia (a particular 
clinically-significant state) and so on. 

More precisely, we can describe the pro- 

cess lattice as follows. The lattice contains 

a collection of nodes, and each one defines 
a mapping from a set of input states (the 

states of the inferior nodes) to an output 
state (its own state). We posit that a node’s 

state always reflect (or be in transition to) 

the value yielded by applying its own state 
function to the current values of its input 

states and its own state. It follows that, 
whenever some value changes, the effect of 

the change ripples upwards through the lat- 

tice. A node’s state may be “undefined” 

as well, or may be “pending”, which is an 
intermediate condition; each node’s state 
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function determines explicitly when the lo- 
cal state value is defined, undefined and 
pending. Concretely, a value will be defined 
when “enough” inferior values are defined 
to allow the state function to be computed. 
Nodes with the null state function (depend- 
ing on no inferiors, relying on externally- 
supplied values) have “undefined” state in 
the absence of an external data signal. Sup- 
pose, though, that some important inferior 
values (values that are highly weighted in 

the local decision procedure) are available, 

but others are missing; the local decision 
procedure might then decide that it ought to 
be defined, although it lacks sufficient data 

to compute a state; so it becomes “pend- 

ing”. A “pending” node reflects a request- 
for-data downwards to all undefined inferi- 

ors. They become “pending” in turn, and 
reflect the request downward again. Thus 
the effect of a data-request filters downward 

as data values filter upwards; as requests fil- 
ter downward, they merely notify all “state 
undefined” nodes along the way that data 
is wanted. If we equip bottom-rank nodes 
with warning lights, a flashing warning light 
means “enter data”. The data filter up- 
wards, and eventually all undefined states 
become defined. 

We supply two types of “logic probe” 
with the system, an “inject value” probe 
and a “read value” probe. We can touch 
any node with an “inject value” probe, 
thereby setting the state of the node we 
touch to any value we choose. In the de- 
fault configuration described above, then, 
each node in the bottom rank has a null 
state function; instead, each bottom-rank 
node has a permanently-attached inject- 
value probe through which we pump new 
values into the system. We can read any 

node’s current state by touching it with a 
“read-value” probe. If the current state of 
the node we touch is undefined, touching 

it with a read-probe changes its state to 
“pending”, and the query propagates down- 
ward to each of the node’s inferiors. Even- 
tually new data values arrive and a query- 
response is computed. 

It’s easy to build such a program in 
Linda. In outline, the implementation 
works as follows: each lattice node is im- 
plemented by a separate process; each node 
stores its current state in a tuple; a node 

that updates its state (by removing its 

state tuple via in, and reinstalling an up- 
dated version via out) notifies all interested 
parties by sending signals along message 

streams. Message streams are implemented 

as sequences of numbered tuples; the tech- 

nique is discussed in [CG88]. When node Q 
is informed that “node N has just uidated 

its state”, Q uses rd to read N’s state tuple 
directly. 

This program architecture might in the 
abstract be implemented on top of a 
message-passing or a concurrent object sys- 
tem; Linda isn’t the only possible imple- 
mentation vehicle. But Linda seems like 
a good choice. The salient point is that 
Linda allows state information to be stored 
in tuple space, where it is directly acces- 
sible to any interested party. Any num- 
ber of concurrent processes may read any 
node’s state directly, and simultaneously; a 
state is inaccessible only when the state tu- 
ple has been (temporarily) withdrawn for 
updating. Ease of access to state data 
is important to a program architecture in 
which many processes may need access to 
this data, and new processes may dynami- 
cally and unpredictably seek access as the 
program runs (particularly when we at- 
t ach probes). Storing each node’s state 
in a local data structure, and shipping it 

out explicitly to each interested party (a 
message passing solution), or encapsulat- 
ing state data inside a monitor, and deal- 
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ing with a monitor’s cumbersome synchro- 
nization mechanisms to insure concurrent 
access to readers, exclusive access to writ- 
ers, and correct delivery of “update” sig- 
nals along inter-node message streams (as 
in a monitor-based concurrent-object lan- 
guage), seem like more complicated and less 
attractive strategies. 

The ICU monitor problem was posed 
by anesthesiologists at the Yale Medical 
School; Dr. Perry Miller (director of the 
Medical Informatics program at Yale) and 
Dr. Stanley Rosenbaum are collaborators 
in this research. The current system (di- 
agrammed in figure 5) is too incomplete 
to. be clinically testable. It uses a process 
lattice with 38 nodes; our domain experts 
estimate that roughly four times as many 
would be required in order to cover 95% of 

the relevant major diagnoses. Our goals 
in the project extend beyond the proto- 
type, though. The experts are pleased with 
the prototype’s performance: a recent test 

involving five one-hour sets of simulation 

data produced “correct” and “reasonable” 

behavior. Development work aimed ulti- 
mately at a clinically-testable system con- 
tinues. 

5 Conclusions 

It’s clear that we can parallelize interest- 

ing applications using Linda. The trans- 

formation is by no means uniformly sim- 
ple to accomplish; some thought may be 
involved, which is precisely why Linda is 
necessary and (as in the primes-generating 
example) compilers can’t necessarily be re- 
lied on, at least for now. On the other 

hand, although the transformation from se- 
quential to parallel may require some think- 

ing, it rarely seems to require a frightening 

amount[CG88]. We know of nothing that 
should prevent any competent programmer 

from learning how to do it. Of course there 
are also cases in which no transformation 
is required because, as in the last example, 
the program structure involved is conceived 
in parallel from the start. 

The results we’ve presented deal with 
small parallel machines only, which repre- 
sents our experience to date. We can’t 
prove, yet, that Linda will work well on 
large multi-computers, but we suspect that 
it will, and are working on kernels for larger 
machines now. (The Linda Machine is de- 
signed to scale upwards to roughly a thou- 
sand nodes. For the time being, a thou- 
sand powerful nodes will be plenty for our 
purposes.) A replicated-worker program in 
Linda looks the same whether there are 10 
or 1000 workers (not that its performance 
is guaranteed to scale up, but certainly the 
design of such a program poses no unsolved 
problems); process-lattices involving thou- 
sands of decision nodes are also easy to 
imagine, and will be no harder to build than 

our current smaller versions. 

Appendix 

The Linda model is a memory model. Linda 

memory (called tuple space) consists of a 
collection of logical tuples. There are two 

kinds of tuples waltzing around inside it. 

Process tuples are under active evaluation; 

data tuples are passive. To build a Linda 

program, we ordinarily drop one process tu- 
ple into tuple space; it creates other process 

tuples. The process tuples (which are all ex- 
ecuting simultaneously) exchange data by 
generating, reading and consuming data tu- 
ples. A process tuple that is finished execut- 
ing turns into a data tuple, indistinguish- 
able from other data tuples. 

One Linda programming paradigm we 
rely on involves distributed data structures 
and a bunch of identical worker processes 
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Figure 5: Process Lattice for an ICU Monitor. 
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(or several bunches of different kinds of pro- s, and the executing process continues. If 
cesses) crawling over the data structures si- no matching t is available when in(s) exe- 
multaneously. We use the term distributed cutes, the executing process suspends until 
data structure [CGLS6] to refer to a data one is, then proceeds as before. If many 
structure that is directly accessible to many matching t’s are available, one is chosen ar- 
processes simultaneously. Any datum sit- bitrarily. rd(s) is the same as in(s), with 
ting in a Linda tuple space meets this cri- actuals assigned to formals as before, ex- 
terion: it is directly accessible - via the cept that the matched tuple remains in TS. 
Linda operations described below - to any Predicate versions of in and rd, inp and 
process that currently occupies the same rdp, attempt to locate a matching tuple 
tuple space. A single tuple constitutes a and return 0 if they fail; otherwise they 

simple distributed data structure. We can 
build more complicated multi-tuple struc- 
tures (arrays or queues, for example) as 

well. 

It’s reasonable to describe a parallel com- 

puter that supports Linda as an “uncon- 
nect ion machine” . Programming models 

like Occam [MS31 and the Connection Ma- 

chine [Hi1851 tend to bind concurrent pro- 

cesses tightly together (implicitly, through 

the intermediation of a parallel data struc- 

ture, in the case of the Connection Ma- 

chine). In Linda the opposite is true. Linda 
processes aspire to know as little about 
each other ‘as possible. They never inter- 
act with each other directly; they deal only 
with tuple space. We believe that tightly- 

bound collections of synchronous or quasi- 
synchronous activities tend to force pro- 
grammers to think in simultaneities. Great 
simplification of the potentially formidable 
task of parallel programming is possible, 
we believe, if concurrent processes are so 
loosely bound (so unconnected) that each 
can be developed independently of the rest. 

return I, and perform actual-to-formal as- 
signment as described above. (If and only 
if it can be shown that, irrespective of rela- 
tive process speeds, a matching tuple must 
have been added to TS before the execu- 

tion of inp or rdp, and cannot have been 

withdrawn by any other process until the 
inp or rdp is complete, the predicate oper- 

ations are guurunteed to find a matching tu- 

ple.) eval (t) is the same as out(t) , except 

that t is evaluated after rather than before 

it enters tuple space; eval implicitly forks 

a new process to perform the evaluation. 

Eva1 has been implemented on the Encore 
and Sequent but not yet on the other sys- 
tems we discussed. (Where eval doesn’t 

yet exist, programmers rely on the native 
operating system to fork processes.) 

Tuple space is an associative memory. 
Tuples have no addresses; they are selected 
by in or rd on the basis of any combination 
of their field values. Thus the five-element 
tuple (A, B, C, D, E) may be referenced as 
“the five element tuple whose first element 
is A,” or as “the five-element tuple whose 
second element is B and fifth is E” or by 
any other combination of element values. 
To read a tuple using the first description, 
we would write 

rd(A, ?w, ?x, ?y, ?z) 

(this makes A an actual parameter -it must 
be matched against - and w through z for- 
mals, whose values will be filled in from the 

There are four basic tuple-space opera- 
tions, out, in, rd and eval, and two vari- 
ant forms, inp and rdp. out (t) causes tu- 
ple t to be added to TS; the executing pro- 
cess continues immediately. in (3 > causes 
some tuple t that matches template s to 
be withdrawn from TS; the values of the 

actuals in t are assigned to the formals in 
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matched tuple). To read using the second 
description we write 

rd(?v, B, ?x, ?y, E) 

and so on. Associative matching is in fact 
more general than this: formal parameters 
(or “wild cards”) may appear in tuples as 
well as match-templates, and matching is 

sensitive to the types as well as the values 
of tuple fields. 

References 

[ACG86] S. Ahuja, N. Carrier0 and D. Gelern- 
ter, “Linda and Friends,” IEEE Computer, 
August 1986. 

[ACGK88] S. Ahuja, N. Carriero, D. Gel- 
ernter, and V. Krishnaswamy, “Matching 
Language and Hardware for Parallel Com- 
putation in the Linda Machine,” I&Z,!? 
Trans. on Computers, August 1988. 

[BjCGL88] R. Bjornson, N. Carriero, D. 
Gelernter, and J. Leichter, “Linda, 
the Portable Parallel,” Research Re- 
port YALE/DCS/RR-520, Yale Univer- 
sity, January 1988. 

[Car871 N. Carriero, Implementing tuple space 
machines. Doctoral Diss., Yale University, 
1987. 

[CG85] N. Carrier0 and D. Gelernter, “The 
S/Net’s Linda Kernel,” in Proc. ACM. 
Symp. Operating System Principles, De- 
cember 1985 and (ACM Trans. Comp. 
Sys. May 1986. 

[CG88] N. Carrier0 and D. Gelernter, “How to 
Write Parallel Programs: A Guide to The 
Perplexed,” Research Report, Yale Univer- 
sity, May 1988. 

[CGL86] N. Carriero, D. Gelernter and J. 
Leichter, “Distributed data structures in 
Linda,” in Proc. ACM Symp. Principles 
of Prog. Languages, January 1986. 

[Don871 J. Dongarra, “Performance of Var- 
ious Computers Using Standard Linear 
Equations in a FORTRAN Environment,” 
Technical Memorandum, Argonne Na- 
tional Laboratory, 1987. 

[GeI85] D. Gelernter, “Generative communi- 
cation in Linda,” A CM Trans. Prog. Lung. 
Sys. l( 1985):80-112. 

[GB82] D. Gelernter and A. Bernstein, “Dis- 
tributed communication via global buffer,” 
in Proc. ACM Symp. Principles of Dis- 
tributed Computing, (Aug. 1982):10-18. 

[Got821 0. Gotoh, “An improved algorithm 
for matching biological sequences,” J. Mol. 
Biol. 162( 1982):705-708. 

[H85] D. Hillis, The Connection Machine. 
MIT Press (1985). 

[Jor86] H.F. Jordan, “Structuring parallel al- 
gorithms in an MIMD, shared mem- 
ory environment ,” Parallel Computing 
3(1986):93-110. 

[May831 M.D. May, “Occam.” ACM SIG- 
PLAN Notices, 18-4( 1983):69-79. 

[NPA86] R. Nikhil, K. Pingali and Arvind, 
“ID Nouveau,” Technical Report 265 
(MIT) 1986. 

[Tha88] IEEE Software: Special issue on par- 
allel programming, S,S. Thakkar, ed., Jan- 
uary 1988. 

[WL88] R. Whiteside and J. Leichter, “Us- 
ing Linda for Supercomputing On a Lo- 
cal Area Network.” Supecomputing ‘88, (to 
appear). 

187 


