Praxis

A logic-based DSL for modeling
social practices

Demo

now Marriage Proposal from two angles
now Dinner Party, choosing two different

naracters

Versu is...

Real-time

Multiplayer

Text-based

Simulation

Set in Jane Austen’s Regency England

The Simulator

e The world is a set of facts

* The dynamic elements are social practices and
agents

The Simulator

e The world is a set of facts

* The dynamic elements are social practices and
agents

Social Practices

The Need for Social Practices

The Sims 1
My Sim invited his boss over for dinner.

When he arrived, my Sim let him in - but then
he went to have a bath!

He didn’t understand that certain things were
expected of him as a host.

What is a Social Practice?

* |t describes what agents can do in a social
situation

* |t also says what agents should do

Social Practices

Practices

State A

Option

Option State D

Option Option
State B r_ Option

Option State E

Option

Agents

Social Practices

Practices

State A

Option

Option

Option

State B

Option

Option

Agents

10

Social Practices

State A State C
Option Option
Option State D
Option Option

State B State D
Option Option
Option Option

\\ Option
Option

@ @ _

Option

Option

Social Practices

State A State C
Option Option
Option State D r'
Option Option

State B State D
Option Option
Option Option

Option

Option
®@® _

Option

Option

Social Practices

W
Option

Option

Option

C

State B

Option

Option

@@

State C

Option

Option

Option

13

What is a Social Practice?

* [t issues different requests in different
circumstances

* [t issues different requests to different people

* |t notices when requests are satisfied or
confounded

Demo

* Show an example of norm-violation.

Multiple Concurrent Practices

State A State C
Option Option
Option State D
Option Option

State B State D
Option Option
Option Option

Option

Option
@ @ ;

Option

Option

300+ Social Practices in Versu

Dinner Party
Conversation
Debate
Games
Death

Demo

e Evaluate process.X in dinner party and whist
game

 Show sub-tree of process.whist

Implementation

A Social Practice is a set of sentences in
Exclusion Logic

The Simulator

e The world is a set of facts

* The dynamic elements are social practices and
agents

Agents

Implementation

 An agent is just a set of sentences in Exclusion
Logic
— Beliefs
— Desires
— Personality quirks

— Backstory

Demo

* Show sub-terms of brown in the Dinner Party

Agents

* An agent has a set of wants
* He uses utility-based decision-making

Demo

e Show sub-terms of brown.wants in the Dinner
Party

 Show the actions Brown is considering, sorted
by score

The Simulator

e The world is a set of facts

* The dynamic elements are social practices and
agents

 The dynamic elements supervene on the facts

The Simulator

e The world is a set of facts

* The dynamic elements are social practices and
agents

* The dynamic elements supervene on the facts

Facts Instantiate Processes

providle ——| Actions

| Processes

instantiate e persnmed y

Agents |

28

Processes Provide Actions

| Processes

instantiate

provide ———=| Actions

are performed by

Agents |

29

Agents Perform Actions

| Processes

instantiate

Facts

<+—— modify

providle ——| Actions

are performed by

Y

Agents |

30

Performance Modifies Facts

| Processes

instantiate

providle ——| Actions

are performed by

Agents |

31

Exclusion Logic

Praxis is based on a new modal logic
called Exclusion Logic

32

Elementary Propositions

e Jack fell
e Jack likes Jill

Propositional Logic

“Jack likes Jull" — p

e We cannot infer “Jack likes someone”

Predicate Logic

“Jack likes Jill" — Likes(Jack, Jill)

Likes(Jack, Jill) = (3x) Likes(Jack, x)

* |[n Predicate Logic, there are no logical
relations between elementary propositions

Likes(Jack, Jill) = (3x) Likes(Jack, x)

* |In Predicate Logic, there are no logical
relations between elementary propositions

Likes(Jack, Jill) = (3x) Likes(Jack, x)

Logical Relations between
Elementary Propositions

* “Jack is male” is incompatible with “Jack is
female”

e “Jack walks quickly” entails “Jack walks”

Exclusion Logic

* Alogic which supports logical relations
between elementary propositions

Wittgenstein

 “There are rules for the truth functions which
also deal with the elementary part of the
proposition”

Elementary Propositions

Propositional Logic An indivisible atomic sentence
Predicate Logic Supports inferential relations with compound sentences
Exclusion Logic Supports inferential relations with other elementary

propositions

Exclusion Logic

E:=S5|SE|SFE
C:=F|-C|CAC

E:=S|SFE|SE

 The “” and “!” operators are used to build up
trees of information

e S.E means that E is one of the ways in which S
IS true

 S/IE means that E is the only way in which S is
true

E:=S|SFE|SE

Jack.Fell One of the properties of Jack is that he fell
Jack.Likes.Jill One of the people Jack likes is Jill

Jack.Gender!Male The (unique!) gender of Jack is male

E:=S|SFE|SE

e Jack.Likes.Jill
e Jack.Likes.Josie

E:=S|SFE|SE

e Jack.Gender!Male

e Jack.Gender!Female

Inference Rules

XY X
XY X
XYNXIZFEP

Inference Rules

XYFX
XY FEX
XWYNXIZFP

XY FryYy
XY kFY
XYNXZFP

Logical Relations between
Elementary Propositions

* “Jack is male” is incompatible with “Jack is
female”

e “Jack walks quickly” entails “Jack walks”

Logical Relations between
Elementary Propositions

* “Jack is male” is incompatible with “Jack is
female”

Jack.Gender'Male - —Jack.Gender! Female

Logical Relations between
Elementary Propositions

* “Jack walks quickly” entails “Jack walks”

Jack.Walks.Quickly = Jack.Walks

Representing Incompatible Predicates
in Predicate Logic

Gender(Jack) = Male

* Requires identity predicate and axiom schema

(Vo,y) v =y A F(x) = F(y)

Representing Incompatible Predicates
in Predicate Logic

* Brachman and Levesque:

(V) Man(x) — ~-Woman(z)

Representing Incompatible Predicates
in Predicate Logic

* Brachman and Levesque:

(V) Man(x) — ~-Woman(z)

(V) SupportsArsenal(x) ——SupportsBarnsley(x)A
—Supports Fulham(x)A
~SupportsGrimsby(z) A ...

Adverbial Inferences in Predicate Logic

* Davidson analysed “I flew my spaceship to the
Morning Star” as:

(dz)Flew (I, MySpaceship,)
NTo(x, TheMorningStar)

“I flew my spaceship to the Morning Star”
entails “I flew my spaceship”

Adverbial Inferences in Predicate Logic

e “Jack walks”

(Fx)Walks(Jack, x)

Predicate Logic vs Exclusion Logic

* Predicate Logic can handle these inferences

* Butit can only do so be reinterpreting the
sentences as compound

* [t uses more complex machinery to get the
same results that Exclusion Logic gets directly

Semantics

We use a labeled rooted tree

Every vertex is reachable from a starting
vertex T

Each vertex is labeled with a symbol from S
Each edge is labeled with either ! or *

Labeled Rooted Tree

(V, E, L, M, R) where

V: set of vertices

E: set of edges (V,, V,)

L: vertex labelingV -> S
M: edge labeling E -> {*,!}
R: root, member of V

Semantics

S

o e,

®)
© © ©

?
?
®

A Partial Ordering on LRTs

@

—©

A Partial Ordering on LRTs

e

:

Greatest Lower Bound

Greatest Lower Bound

®—=6

Greatest Lower Bound

O—0©—6=0

D
ﬁ\@
0

Satisfaction

Sat(X,v, L, S) iff

Sat(X,v, L, S'F) iff

Sat(X,v,L,S.F) iff

Jv’ : (v,0") € Ex
Lx(v') =S and
Mx (v,v") = L

Jv’ : (v,0") € Ex
Lx(@')=3S

Mx (v,v") = L and
Sat(X,v',|, E)

v’ : (v,0") € Ex
Lx(v') =S and
Mx (v,v") = L and
Sat(X, v, *, E)

Decision Procedure

* Define [x] as the set of LRTs which satisfy x
x| ={M| Em x}

 Because the LRTs form a lattice, this set has a
least upper bound:

| |l=]

Decision Procedure

= Yit VM =3 X

iff| X| C |Y

iff| |[X]<| Y]

Computing the LUB

m(AANB)=m(A)Mm(B)
(Vm(A) U {U},Em(A) U {(U/,’())}, Lm(A) U (v, B),Mm(A) U {((v’,v), *)})
(Vm(A) U {?}}, Em(A) U {(vlvv>}7 Lm(A) U (Ua B)a Mm(A) U {((1/7 U)v ')})

Hennessy-Milner Logic

e Let A be a set of constants
* Let B={*!} be atwo-point set

C:={(a,bC|CANC|T
where a« € A,b € B

Hennessy-Milner Logic

* A modelis arooted graph where transitions
are labeled with constants from A

e Satisfaction in a graph T rooted at r:

T l={a,x)Cif It,r StAT(H) =C

—(a,NCif It,r S tAT(t) = C Aout(t) =1
_ANBifT=AANT =B

~

~

Praxis

Using Exclusion Logic as a
Logic Programming Language

72

Praxis: Evolution

1) Roll-my-own procedural language

 Spent a lot of time implementing basic language
features

* No debugger; no visualisation of state

2) Thin DSL on top of LUA
e Untyped

3) Coded practices directly in C#
 Verbose, error-prone

4) Practices encoded in Deontic Logic
5) Praxis

The Query Language

E:=T|T.E|TE
RQ:=F|-Q|QNQ|QVAQ]
Q—Q|VX,Q|3IX,Q

Typing

Praxis is strongly typed and statically typed
t has sub-typing

t uses type-inference

Type Inference

function define_characters
if global.playable.N!X
then
insert global.is_playing.X
insert X.at!front_yard

global.playable.Index (number) ! Agent (agent)

76

Instantiating Practices

process.greet.X(agent) .Y(agent)
action "Greet"
preconditions
Actor = X
Actor.in!L
postconditions

text "[X] says ’hullo’ to [Y obj]" if Recipient.in!L
call update_conversation.L.Actor.greet.Y.respond_to_greet

insert process.respond_to_greet.Y.X
delete Self
end

77

Instantiating Practices

process.greet.X(agent) .Y (agent)
action "Greet"

preconditions
Actor = X
Actor.in!L
postconditions

text "[X] says ’hullo’ to [Y obj]" if Recipient.in!L
call update_conversation.L.Actor.greet.Y.respond_to_greet

insert process.respond_to_greet.Y.X
delete Self
end

process.greet.jack.jill

78

Instantiating Practices

process.greet.X(agent) .Y (agent)
action "Greet"

preconditions
Actor = X
Actor.in!L
postconditions

text "[X] says ’hullo’ to [Y obj]" if Recipient.in!L
call update_conversation.L.Actor.greet.Y.respond_to_greet

insert process.respond_to_greet.Y.X
delete Self
end

process.greet.jack.jill
Jack/X, Jill/Y

79

Practices are HFSMs

process.ticTacToe.Playerl(agent) .Player2(agent)

state!whoseMove!Mover (agent) !Other (agent)

action "Tic Tac Toe | Row [R] | Place [Piece] at [C],[R]"
preconditions

Actor = Mover
Parent.board.C.R!empty
Parent.piece.Mover!Piece
Parent.piece.Other!OtherPiece

postconditions
text "[Mover] place[s] an [Piece] at [C], [R]." if Paa
insert Parent.board.C.R!Piece
call updateBoardOnMove.Mover.Other.C.R.Piece.0OtherPiec
insert Parent.state!whoseMove!Other!Mover

80

Practices have constructors

process.ticTacToe.Playerl(agent) .Player2(agent)
start

insert Self.participants.Playerl

insert Self.participants.Player2

insert Self.viewers.Playerl

insert Self.viewers.Player2

text "You are playing ’X’" to Playerl
text "You are playing ’0’" to Player?2
insert Self.piece.Playerl!x

insert Self.piece.Player2!o

81

Practices provide actions

action "The game of whist...|Trump with the [RT] of [S]"
preconditions

Actor = Player

Actor.in!L

Parent.trumps!S

Parent.cards.Actor.R.S

data.cards. rank.R!RV!RT

Parent. leading_suit!LeadingSuit

LeadingSuit ~= S

not Parent.cards.Actor.Any.LeadingSuit

postconditions

text "[Actor] trump[s] with the [RT] of [S]"

call norm_respecting.Actor

insert Parent.trick.Actor!R!S

delete Parent.cards.Actor.R.S

call evaluate_trump.Actor

if N = 4 then
insert Parent.state!evaluate_trick

else
if Parent.next.Actor!Next and NextN = N+1 then

insert Parent.state!follow!NextN!Next

end

end

82

action "The game of whist...|Trump with the [RT] of [S]"
preconditions
Actor = Player
Actor.in!L
Parent.trumps!'S
Parent.cards.Actor.R.S
declarative data.cards. rank.R!RV!RT
Parent. leading_suit!LeadingSuit
LeadingSuit ~= §
not Parent.cards.Actor.Any.LeadingSuit
postconditions
text "[Actor] trump[s] with the [RT] of [S]"
call norm_respecting.Actor
insert Parent.trick.Actor!R!S
delete Parent.cards.Actor.R.S
call evaluate_trump.Actor
if N = 4 then
insert Parent.state!evaluate_trick
imperative e lse
if Parent.next.Actor!Next and NextN = N+1 then

insert Parent.state!follow!NextN!Next
end
end

83

Updating the Database

* When adding a sentence p to the database,
we first remove all information which is

incompatible with p
* This is a non-monotonic update

Updating the Database

Updating the Database

Using Exclusion Logic as a KRL

brown.
brown.
brown.
brown.

brown.

An Object is a Sub-Tree

sex!male

class!upper

in!dining room
relationship.lucy.evaluation.attractive!40

relationship.lucy.evaluation.humour!20

An Object is a Sub-Tree

e Specify the life-time of a piece of data by
placing it in the right part of the tree

* brown.relationship.lucy.evaluation.attractive!40

* process.whist.data.whose move!brown

Garbage Collection

An FSM has two statesa and b

State a has two bits of data: x and y

We are in state a:

fsm.statela.x /\ fsm.state!la.y

Now insert fsm.statelb

The data (a.x /\ a.y) is removed automatically

Simpler Postconditions

action move(A, X, Y)
preconditions
at (A, X)
postconditions
add at(A, Y)
remove at(A, X)

Simpler Postconditions

action move(A, X, Y)
preconditions
A.at!X
postconditions
add A.at!yY

Simpler Queries

M arried(Bride, Groom, Place, Time, O f ficial)
Who is Jill married to?

(g, p,t, f) Married(Jill, g,p,t, f)
Married.Jill

Exclusion is Typing Information

A (agent) .sex!G (gender)
brown.sex.male
Bad typing in brown.sex.male in line 65

The first problem appears to be with “male”

Improvements to Praxis

Exclusion Logic

S.E
—C

S'E
CANC

Extended Exclusion Logic

E:=T|T.E|T'E|ENE

A(BANC)=A.BNAC
A(BAC) # AlB N AIC

Extended Exclusion Logic

A(BNC) EA.(CAB)
A(B.DNC)E=EA(BAC)
A(BNC)E=ABNAC

Al(BANC) E A(C N B)
A(B.DANC) E A(BAC)
Al(BAC) = —-ABA-AIC

Improving Praxis

e Data abstraction
* Hindley-Milner type system

Compiling Praxis

e Warren Abstract Machine?

* Or Mercury-style compilation?
— Explicit mode declarations for predicates
e append(in, in, out)
e append(out, out, in)

— Separate procedures generated for each mode
declaration

